当前位置: 首页 > news >正文

建设什么网站自己做的网站怎么被搜录

建设什么网站,自己做的网站怎么被搜录,注册域名不建设网站,淘宝客网站免费建站目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 包围盒构建 4.2 点云压缩 4.3 曲面重建 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ...........................................…

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 包围盒构建

4.2 点云压缩

4.3 曲面重建

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

............................................................................
%包围盒中心坐标
XYZc    = zeros(X_w*Y_w*Z_h,3);
for i=1:X_wXc = Xmin+LL*(i-0.5);for j=1:Y_wYc = Ymin+LL*(j-0.5);for k=1:Z_hZc = Zmin+LL*(k-0.5);XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,1)=Xc;XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,2)=Yc;XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,3)=Zc;endend
end
%中心点与各个点云之间的距离矩阵
Mdist=zeros(Rr,4);
for i=1:RrMdist(i,1)=X_w2(i);Mdist(i,2)=Y_w2(i);Mdist(i,3)=Z_h2(i);Mdist(i,4)=sqrt((XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),1)-Data_3d(i,1))^2+...(XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),2)-Data_3d(i,2))^2+...(XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),3)-Data_3d(i,3))^2);
end
[Y,X_w,Y_w]=unique(Mdist(:,1:3),'rows');X          =zeros(length(X_w),1);
for i=1:length(X_w)X(i)=max(Mdist(Y_w==i,4));
end
Y=[Y X];Data_box = Y(:,1:3);
[t]      = MyCrust(Data_box);
[w]      = MyCrust(Data_3d);%原三维点云曲面图
figure
subplot(121);
axis equal
trisurf(w,Data_3d(:,1),Data_3d(:,2),Data_3d(:,3),'facecolor','c','edgecolor','b') 
grid on
view(-45,30)
xlabel('X');
ylabel('Y');
zlabel('Z');         
title('原三维点云曲面图');%通过包围盒算法的三维点云曲面图
subplot(122);
axis equal
trisurf(t,Data_box(:,1),Data_box(:,2),Data_box(:,3),'facecolor','c','edgecolor','b') 
grid on
view(-45,30)
xlabel('X');
ylabel('Y');
zlabel('Z');    
title('通过包围盒算法的三维点云曲面图');
95

4.算法理论概述

       随着三维扫描技术的快速发展,三维点云数据在多个领域,如计算机视觉、机器人技术和逆向工程中得到了广泛应用。然而,大规模的点云数据不仅存储成本高,而且处理速度慢,这限制了其在实时应用中的使用。为了解决这个问题,本文提出了一种基于包围盒算法的三维点云数据压缩和曲面重建方法。该方法通过减少点的数量同时保留原始点云的主要特征,从而实现了高效的数据压缩和精确的曲面重建。

       三维点云是空间中一系列点的集合,每个点都有其特定的坐标(x, y, z)。这些点可以通过各种方式获得,例如激光扫描、立体视觉等。随着技术的进步,获取的点云数据越来越密集,导致数据量迅速增长。因此,如何有效地压缩这些数据并从中重建出曲面成为了一个重要的问题。在过去的几十年中,许多研究致力于点云数据的压缩和曲面重建。其中,一些方法基于体素网格进行空间划分,另一些则使用迭代的方法对点进行聚类。然而,这些方法在处理大规模、高密度的点云数据时往往效率低下。

       基于包围盒算法的压缩与重建分为三个步骤:包围盒构建、点云压缩和曲面重建。

4.1 包围盒构建

        首先,我们为整个点云构建一个初始的包围盒。然后,递归地将这个包围盒划分为更小的子盒,直到满足某个停止条件(如子盒中的点数少于某个阈值)。每个子盒都包含了一部分点云数据。

4.2 点云压缩

        在每个子盒中,我们选择一个代表点来代替该盒子中的所有点。代表点的选择可以基于多种策略,如盒子的中心点或点云的质心。通过这种方式,大量的点被少数几个代表点所替代,从而实现了数据的压缩。

数学上,假设一个子盒B包含n个点{p1, p2, ..., pn},每个点的坐标为(x, y, z)。该子盒的代表点Pr可以计算为:
(Pr = \frac{1}{n} \sum_{i=1}^{n} p_i)
这里,Pr是子盒中所有点的坐标平均值。

4.3 曲面重建

        在得到压缩后的代表点后,我们使用这些点作为控制点来构建一个三角网格,从而近似原始点云的曲面。具体地,我们可以使用Delaunay三角剖分或Ball Pivoting算法来生成三角网格。

5.算法完整程序工程

OOOOO

OOO

O

http://www.yayakq.cn/news/289039/

相关文章:

  • 网站对公司有什么好处网站建设多少钱裤
  • 图片网站用什么主机企业网站建立答辩问题
  • 廉洁文化建设网站佛山网红打卡地
  • 网站建设公司资讯怎么用域名进网站
  • 江西省人社窗口作风建设网站php mysql 网站开发
  • 怎么做网站前段山西招标
  • 江门鹤山最新消息新闻专业seo服务
  • 天津滨海新区网站建设吉林关键词优化的方法
  • 企业营销型网站有特点网站建设都需要什么资料
  • 如何为一个网站做短连接网络规划设计师科目分类
  • 杭州做网站推广公司推荐网站设置访问密码
  • 仿站酷网站模板影院源码wordpress2018
  • 做网站优化专业做外贸的网站
  • 手机 互动网站案例网页 网站 区别
  • 唐山市城乡建设网站网页制作工作网站
  • 织梦网站后台地址品牌网站建设创意新颖
  • 营销型网站建设怎么收费手机网页游戏排行榜
  • 网站建设的进度安排和人员安排青岛网站制作服务商
  • wordpress定时网站地图网站界面分析
  • 广西网站制作公司建设网站项目总结
  • 为什么登录不上建设银行网站网站备案批量查询
  • 网站seo推广seo教程wordpress装百度联盟广告
  • 网站建站好处建设网站教程2016
  • 做网站推销手表阿里云做网站送服务器
  • 什么是网站的访问流量建站推广哪里有建站新闻资讯
  • 四川网站开发制作钢铁网站建设
  • 帝国cms做微网站网站的权限设置
  • 女装网站建设费用预算旅游景区网站建设
  • h5 网站模板h5可视化拖拽生成工具
  • ps免费素材网站有哪些企业形象设计课程标准