当前位置: 首页 > news >正文

网站类软文wordpress贝宝插件

网站类软文,wordpress贝宝插件,做网站开发用哪门语言,被邀请做刷客会不会碰到钓鱼网站# 新的数据格式,csv纯文本,使用某个字符集,比如都是ASCII、Unicode、EBCDIC或GB2312(简体中文环境)等;由记录组成(典型的是每行一条记录)每条记录被分隔符(英语&#xff…
# 新的数据格式,csv
  • 纯文本,使用某个字符集,比如都是ASCII、Unicode、EBCDIC或GB2312(简体中文环境)等;
  • 由记录组成(典型的是每行一条记录)
  • 每条记录被分隔符(英语:Delimiter)分隔为字段(英语:Field(computer science))(典型分隔符号有逗号、分号或制表符;有时分隔符可以包括可选的空格)
  • 每条记录都有同样的字段序列
import pandas as pd 
import numpy as np
abs_path = r'F:\Python\learn\python附件\pythonCsv\data.csv'
df = pd.read_csv(abs_path,encoding='gbk')
df.head(2)
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
12韩辉909575758085
type(df)
pandas.core.frame.DataFrame

DataFrame

# 列名
print(df.columns)
# 索引
print(df.index)
Index(['序号', '姓名', '性别', '语文', '数学', '英语', '物理', '化学', '生物'], dtype='object')
RangeIndex(start=0, stop=7, step=1)
df.loc[0]
序号      1
姓名    渠敬辉
性别      男
语文     80
数学     60
英语     30
物理     40
化学     30
生物     60
Name: 0, dtype: object
a = np.array(range(10))
a > 3
array([False, False, False, False,  True,  True,  True,  True,  True,True])
# 筛选数学成绩大于80
df[df.数学 > 80]
序号姓名性别语文数学英语物理化学生物
12韩辉909575758085
34石天洋909095807580
df[df.数学 < 80]
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
45张三606060606060
67王五707070707070
# 复杂筛选
df[(df.语文 > 80) & (df.数学 > 80) & (df.英语 > 80)]
序号姓名性别语文数学英语物理化学生物
34石天洋909095807580

排序

df.sort_values(['数学','语文','英语']).head()
序号姓名性别语文数学英语物理化学生物
45张三606060606060
01渠敬辉806030403060
67王五707070707070
56李四808080808080
23韩文晴958085608090

访问

# 按照索引去定位
df.loc[3]
序号      4
姓名    石天洋
性别      男
语文     90
数学     90
英语     95
物理     80
化学     75
生物     80
Name: 3, dtype: object

索引

scores = {'英语':[90,78,89],'数学':[64,78,45],'姓名':['wong','li','sun']
}
df = pd.DataFrame(scores,index=['one','two','three'])
df
英语数学姓名
one9064wong
two7878li
three8945sun
df.index
Index(['one', 'two', 'three'], dtype='object')
# 因为此时不存在数字索引,所以不能通过数字索引去访问
# df.loc[1]
df.loc['one']
英语      90
数学      64
姓名    wong
Name: one, dtype: object
# 实实在在的所谓的第几行
df.iloc[0]
英语      90
数学      64
姓名    wong
Name: one, dtype: object
# 合并了loc和iloc的功能,新版本下ix方法已被弃用
df.ix[0]
---------------------------------------------------------------------------AttributeError                            Traceback (most recent call last)<ipython-input-22-413c174d3cd1> in <module>1 # 合并了loc和iloc的功能
----> 2 df.ix[0]G:\Anaconda\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)5272             if self._info_axis._can_hold_identifiers_and_holds_name(name):5273                 return self[name]
-> 5274             return object.__getattribute__(self, name)5275 5276     def __setattr__(self, name: str, value) -> None:AttributeError: 'DataFrame' object has no attribute 'ix'
df.loc[:2]
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
12韩辉909575758085
23韩文晴958085608090
# 当索引为数字索引的时候,ix和loc是等价的,新版本下ix方法已被弃用
df.ix[:2]
---------------------------------------------------------------------------AttributeError                            Traceback (most recent call last)<ipython-input-33-a97de2692f80> in <module>1 #当索引为数字索引的时候,ix和loc是等价的
----> 2 df.ix[:2]G:\Anaconda\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)5272             if self._info_axis._can_hold_identifiers_and_holds_name(name):5273                 return self[name]
-> 5274             return object.__getattribute__(self, name)5275 5276     def __setattr__(self, name: str, value) -> None:AttributeError: 'DataFrame' object has no attribute 'ix'
# 访问某一行,是错误的
# df[0]# 访问多行数据是可以使用切片的
df[:2]
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
12韩辉909575758085
# dataframe中的数组
df.数学.values
array([60, 95, 80, 90, 60, 80, 70], dtype=int64)
# 简单的统计
df.数学.value_counts()
60    2
80    2
95    1
70    1
90    1
Name: 数学, dtype: int64
# 提取多列
new = df[['数学','语文']].head()
new
数学语文
06080
19590
28095
39090
46060
new * 2
数学语文
0120160
1190180
2160190
3180180
4120120

重点

def func(score):if score>=80:return '优秀'elif score>=70:return '良'elif score>=60:return '及格'else:return '不及格'passdf['数学分类'] = df.数学.map(func)
df.head()
序号姓名性别语文数学英语物理化学生物数学分类
01渠敬辉806030403060及格
12韩辉909575758085优秀
23韩文晴958085608090优秀
34石天洋909095807580优秀
45张三606060606060及格
# applymap对dataframe中所有的数据进行操作的一个函数,非常重要
def func(number):return number + 10
# 等价
func = lambda number : number + 10df.applymap(lambda x : str(x) + ' - ').head(2)
序号姓名性别语文数学英语物理化学生物数学分类
01 -渠敬辉 -男 -80 -60 -30 -40 -30 -60 -及格 -
12 -韩辉 -男 -90 -95 -75 -75 -80 -85 -优秀 -

匿名函数

# 列表推导式
[i+100 for i in range(10)]
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
def func(x):return x + 100
list(map(func,range(10)))
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
# 匿名函数的使用条件:
# 1.函数就一行
# 2.函数不经常使用
# 3.函数没有必要取名字
list(map(lambda x : x+100,range(10)))
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
# apply根据多列生成新的一个列的操作,用apply
df['new_score'] = df.apply(lambda x : x.数学 + x.语文, axis=1)
# 前几行
df.head(2)
# 最后几行
df.tail(2)
序号姓名性别语文数学英语物理化学生物数学分类new_score
56李四808080808080优秀160
67王五707070707070140

panda中的dataframe的操作,很大一部分跟numpy中的二位数组的操作是近似的

http://www.yayakq.cn/news/332590/

相关文章:

  • 北京网站建设华网天下定制app开发免费
  • 网站cmd做路由分析wordpress 加载慢 2017
  • 途途外贸企业网站管理系统wd网页设计教程
  • 网站建设技术包括哪些内容如何做旅游小视频网站
  • 通过门户网站做单点登录SAP群晖登录 wordpress
  • 自贡网站制作公司网站建设与设计教程视频
  • 网站排名易下拉刷词网站如何做流量赚钱
  • 电商网站网址深圳网页设计师收入
  • 网站建设需要些什么设备域名有wordpress
  • 西安网站制作西安搜推宝筹划电子商务网站建设
  • 厦门网站开发网络公司河南一情况
  • 企业网站界面网络优化工程师招聘信息
  • 自学前端怎么学湛江seo
  • 自己做的网站在百度怎么发布网站平台建设是什么
  • 建一个网站都需要什么百度开发者搜索
  • ip38域名信息查询网站中国电力建设公司官网
  • 网站过程东坑镇做网站
  • 做网站 做好把我踢开刚注册公司怎么做网站
  • 北京市工程建设交易中心网站seo指的是搜索引擎营销
  • 邯郸做wap网站的地方电商平台建设有哪些内容呢
  • 如何建设手机端网站wordpress自定义路由
  • 影视网站如何做玖久建筑网
  • 做脚本的网站沈阳网红餐厅
  • 郑州网站建设灵秀asp添加网站管理员
  • wap网站生成系统沈阳正规网站建设哪家便宜
  • 广告平面设计网站怎样管理网站
  • 网站建设如何提高浏览量全国设计公司排行榜
  • 哪些网站可以做海报热点的秦皇岛网站制作的流程
  • 深圳做电商网站网站维护套餐
  • 重庆模板建站代理赣州网站建设公司