当前位置: 首页 > news >正文

汽车制造网站建设网站面包屑如何做

汽车制造网站建设,网站面包屑如何做,网页设计兼职,做网站需要备注号码我们已经学过好久好久的动态规划了,动态规划_Peter Pan was right的博客-CSDN博客 那么,我用一张图片来概括一下背包问题。 大家有可能比较疑惑,优化决策怎么优化呢?答案是,滚动数组,一个神秘而简单的东西…

 我们已经学过好久好久的动态规划了,动态规划_Peter Pan was right的博客-CSDN博客

那么,我用一张图片来概括一下背包问题。

大家有可能比较疑惑,优化决策怎么优化呢?答案是,滚动数组,一个神秘而简单的东西。

01背包

题目:小偷来你家,他带的包只能装c斤的财务。你家有n种财务,分别重w1、w2......wn斤,价值分别为v1、v2......,请输出能拿走的最大总价值?

大家思考一下状态定义和状态转移方程。

额……

状态定义

f[i][j]:用前i个物品,每个物品只能选或不选,满足重量和小于等于j的所有选法中,价值最高的那个方案。最终答案:f[n][c]

状态转移方程

首先,我们分两种情况讨论:1.选i   2.不选i

1。 此时我们重量和会变小w[i],但是价值会增加v[i],f[i][j]=f[i-1][j-w[i]]+v[i]

2。 此时物品数减1,f[i][j]=f[i-1][j]

最后,再取最大值,得到状态转移方程:f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i])

代码①

for(int i=1;i<=n;i++) cin>>w[i]>>v[i];
for(int i=1;i<=n;++i){for(int j=1;j<=c;++j){if(w[i]>j) f[i][j]=f[i-1][j];else f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]);}
}
cout<<f[n][c]<<endl;

有点费空间,要开滚动数组

代码②

滚动数组,给大家看个图

我们发现,dp[i][j]这一格,只需要i-1这一行,i-2、i-3……都不需要。题目如果并没有要求中间的状态(比如输出背包的方案),我们就可以将其省略来节省空间的使用。所以我们可以只用一维数组dp[j]来记录数据dp[i][j]的状态,在更新的过程中不断用新的数据dp[j] (dp[i][j]) 覆盖掉旧的数据dp[j](dp[i-1][j])。大家听懂了吗???

代码呢?

#include <bits/stdc++.h>
using namespace std;
const int MAXC=2009;
int n,c,w,v,f[MAXC];
int main(){cin>>c>>n;for(int i=1;i<=n;i++){cin>>w>>v;for(int j=c;j>=w;j--)f[j]=max(f[j],f[j-w]+v);}cout<<f[c]<<endl;return 0;
}

大家可能会疑惑,为什么第二层循环要倒着推啊,我给出一个解释。我们每次计算dp[j] (即dp[i][j]) 的时候都会需要dp[j-w[i]] (即dp[i-1][j-w[i]])的值。所以如果我们正序计算,那么dp[j-w[i]]就已经更新了 (即用过之前的背包了),与每个背包只能用1次不符。那么,这不就是完全背包要的吗?

完全背包

题目:小偷来你家,他带的包只能装c斤的财务。你家有n种财务,每种数量无限多,分别重w1、w2......wn斤,价值分别为v1、v2......,请输出能拿走的最大总价值?

题解请看01背包,这里只给出代码

cin>>c>>n;
for(int i=1;i<=n;i++){cin>>w>>v;for(int j=w;j<=c;j++)f[j]=max(f[j],f[j-w]+v);
}
cout<<f[c]<<endl;

分组背包

分组01与普通01的区别就是,分组01有两组策略:1.选择本组的某一件 2.一件不选

所以说,分组背包编码很麻烦

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll G=19;
const ll N=39;
const ll MAXV=209;
ll c,n,g,f[MAXV];
vector<ll> w[G],v[G]; 
int main(){cin>>c>>n>>g;for(ll i=1;i<=n;i++){ll ww,vv,p;cin>>ww>>vv>>p;w[p].push_back(ww);v[p].push_back(vv);}for(ll i=0;i<=g;i++){//枚举组号for(ll j=c;j>=0;j--){//枚举载重for(ll k=0;k<w[i].size();k++){//枚举物品if(j>=w[i][k]) f[j]=max(f[j],f[j-w[i][k]]+v[i][k]);}}}cout<<f[c]<<endl;return 0;
}

多重背包

多重背包怎么办呢,这里,我们要采用二进制拆分。

就是……这样

void bb01(int w,int v){for(int j=c;j>=w;j--)f[j]=max(f[j],f[j-w]+v);
}
int main(){cin>>n>>c;for(int i=1;i<=n;i++){cin>>w>>v>>s;for(int k=1;k<=s;s-=k;k*=2) bb01(k*w,k*v);if(s) bb01(s*w,s*v);}cout<<f[c]<<endl;return 0;
}

简单吧,其实为什么这里我都没有进行仔细的讲解,是因为……不会,再多思考思考01背包和图片。

混合背包

大家试着写写。大家有兴趣的话可以去往上搜搜“背包九讲”。

希望这些对大家有用,三连必回

http://www.yayakq.cn/news/572166/

相关文章:

  • 山西建筑劳务网站网站开发资源网
  • 建设工程教育官方网站Wordpress漂亮免费主题
  • 西安做网站培训广州网络哪家比较好
  • 网站建设优化话术网站图片搜索技术哪里可以做
  • 如何在自己电脑上搭建网站大地seo
  • 青岛网站建设有哪些公司购物网站策划书
  • 个人网站设计作品图片丹东电信网站备案
  • 做网站大概要海口最新通知今天重要消息
  • 厦门网站建设建站中心百度推广个人怎么开户
  • 企业网站seo公司微信红包网站制作
  • 成都网站模板购买做网站简单还是app简单
  • 个人网站怎么做才能值钱海南百度竞价推广
  • 哪里建设网站最好网站建设广告素材
  • 假网站怎么做专门做调查问卷的网站
  • 用spl做网站会展公司
  • 网店推广运营策略asp网站 seo
  • 门户网站开发专业建网站需要什么软件
  • 分销网站制作条件网络小白如何建立个人网站
  • 网站一键提交微商各种软件拿码渠道
  • 外卖做的比较好的网站桂林欣梦网络招聘
  • 企业建设网站公司哪家好小程序退款商家不给退咋办
  • 沧州网站建设一网美联网页制作的基本步骤和教程
  • 如何将百度收录网站做微信网站公司名称
  • 网站建设江苏哪种源码做视频网站好用
  • 北京网站制作设计推广公司网站的建设费 账务处理
  • 电子商务网站开发 pdf宣传册模板
  • 网站前台模板下载wordpress主题 线条
  • 莞城区仿做网站网站建设下什么科目
  • 商城免费建站系统百度联盟项目看广告挣钱
  • html网站开发主要涉及哪些技术福建省建设工程职业注册网站