当前位置: 首页 > news >正文

汕头潮阳网站建设东莞长安

汕头潮阳网站建设,东莞长安,平面设计作品集展示,杭州建设监理协会网站70. 爬楼梯(进阶) 题目 70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 改为:一步一个台阶,两个台阶,三个台阶&#xff…

70. 爬楼梯(进阶)

题目

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

改为:一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢

解析

1阶,2阶,.... m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

1.确定dp数组以及下标的含义

dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法

2.确定递推公式

求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

3.dp数组如何初始化

既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

4.确定遍历顺序

这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

5.举例来推导dp数组

Java代码实现

public int climbNStairs(int n,int m){int[] dp = new int[n + 1];dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (i - j > 0) {dp[i] += dp[i - j];}}}return dp[n];
}

322. 零钱兑换

题目

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

解析

1.确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

2.确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

3.dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

4.确定遍历顺序

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

本题并不强调集合是组合还是排列。

采用coins放在外循环,target在内循环的方式。

遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

5.举例推导dp数组

以输入:coins = [1, 2, 5], amount = 5为例

Java代码实现

public int coinChange(int[] coins, int amount) {int max = Integer.MAX_VALUE;int[] dp = new int[amount + 1];Arrays.fill(dp, max);dp[0] = 0;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {if (dp[j - coins[i]] != max) {dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}return dp[amount] == max ? -1 : dp[amount];
}

279.完全平方数 

题目

279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

解析

1.确定dp数组(dp table)以及下标的含义

dp[j]:和为j的完全平方数的最少数量为dp[j]

2.确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

3.dp数组如何初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

4.确定遍历顺序

我们知道这是完全背包,

本题是求最小数!

所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

5.举例推导dp数组

已输入n为5例,dp状态图如下:

Java代码实现

public int numSquares(int n) {int max = Integer.MAX_VALUE;int[] dp = new int[n + 1];for (int i = 0; i < dp.length; i++) {dp[i] = max;}dp[0] = 0;for (int i = 1; i * i <= n; i++) {for (int j = i * i; j <= n; j++) {if (dp[j - i * i] != max) {dp[j] = Math.min(dp[j], dp[j - i * i] + 1);}}}return dp[n] == max ? -1 : dp[n];
}
http://www.yayakq.cn/news/777562/

相关文章:

  • 网页设计与制作教程第五版课后答案如何优化网站结构
  • 阿里云域名注册证书吉林网络seo
  • 新化 网站开发阿里云域名购买
  • 淘宝运营跟做网站哪种工资高最新注册域名查询
  • 网站建设与维护 出题网站建设年度汇报
  • 怎么把自己做的网站怎么做微信网页制作
  • 一般做公司网站需要哪几点成都医疗seo整站优化
  • 专业提供网站建设服务的企业凯里州建公司简介
  • 泸县手机网站建设有哪些单页网站
  • 音乐网站建设论文的目的和意义电子设计大赛网站开发
  • 学校网站建设价格明细表什么公司做企业网站
  • 英文营销网站手机排行榜最新第一名
  • 做网站的是什么软件接app推广
  • 重庆网站建设模板制作电子商务网站开发报价
  • 苏州市城乡和建设局网站wordpress制作单页
  • 南通优化网站排名定制电商平台
  • 网站建设原码昆明企业网站排名公司
  • 贵州做网站kuhugz设计图室内效果图
  • 怎么在网站后台挂马最新热点新闻
  • 检察 网站建设wordpress网站如何加百度搜索
  • 佛山网站公司专业的外贸行业网站设计
  • 惠州网站策划建设软件平台介绍
  • 合肥设网站昌吉网站建设咨询电话
  • 超炫的网站模板微商货源类网站源码
  • 陕西省建设工会网站建网站卓
  • 深圳宝安上市公司网站建设报价网页制作免费下载
  • 做网站赚50万2018网站的建设与维护前景
  • 网站建设心得500字做网站要学的知识
  • 微信公众平台绑定网站优秀毕业设计网站设计
  • 网站在线seo成都个人seo搜狗排名