当前位置: 首页 > news >正文

做网站linux主机短视频推广代理

做网站linux主机,短视频推广代理,乐山建设局网站,网站的系统建设方式有哪些内容一、参考资料 mindspore快速安装 二、重要说明 经过博主多次尝试多个版本,Atlas 200I DK A2无法安装MindSpore Ascend版本。 也有其他博主测试,也未尝成功,例如:【MindSpore易点通漫游世界】在Atlas 200I DK A2 (CANN6.2.RC2)…

一、参考资料

mindspore快速安装

二、重要说明

经过博主多次尝试多个版本,Atlas 200I DK A2无法安装MindSpore Ascend版本

也有其他博主测试,也未尝成功,例如:【MindSpore易点通·漫游世界】在Atlas 200I DK A2 (CANN6.2.RC2)上安装MindSpore Ascend版的踩坑记录

mindspore 1.5.2 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 1.6.2 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 1.7.1 报错无法运行 (./tensor_add_sample: error while loading shared libraries: libhccl.so: cannot open shared object file: No such file or directory)

mindspore 1.8.1 报错无法运行(./tensor_add_sample: error while loading shared libraries: libhccl.so: cannot open shared object file: No such file or directory)

mindspore 1.9.0 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 1.10.1 报错无法运行(./tensor_add_sample: symbol lookup error: /home/HwHiAiUser/.local/lib/python3.9/site-packages/mindspore/lib/libmindspore.so: undefined symbol: _ZN2ge5Model8SetGraphERKNS_5GraphE)

mindspore 2.0.0 报错无法运行(Unsupported device target Ascend)

mindspore 2.1.0 报错无法运行(Unsupported device target Ascend)

三、准备工作

1. 测试环境

设备型号:Atlas 200I DK A2
Operating System + Version: Ubuntu 22.04 LTS
CPU Type: 4核TAISHANV200M处理器
AI CPU number: 0
control CPU number: 4
RAM: 4GB 
miscroSD: 128GB
CANN Vertion: 7.0.RC1
HwHiAiUser@davinci-mini:~$ npu-smi info -t aicpu-config -i 0 -c 0Current AI CPU number          : 0Current control CPU number     : 4Number of AI CPUs set          : 0Number of control CPUs set     : 4

2. MindSpore与CANN版本对齐

通过 链接 查询MindSpore与Ascend配套软件包的版本配套关系。

在这里插入图片描述

3. 安装mindspore_ascend

详细过程,请参考:pip方式安装MindSpore Ascend 310版本

4. 验证是否安装成功

4.1 方法一

import mindspore as ms# ms.set_context(device_target='CPU')
# ms.set_context(device_target='GPU')
ms.set_context(device_target="Ascend")
ms.set_context(device_id=0)
mindspore.run_check()

如果输出以下结果,则说明mindspore_ascend安装成功。

MindSpore version: 版本号
The result of multiplication calculation is correct, MindSpore has been installed on platform [Ascend] successfully!

4.2 方法二

import numpy as np
import mindspore as ms
import mindspore.ops as opsms.set_context(device_target="Ascend")
x = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
print(ops.add(x, y))

如果输出以下结果,则说明mindspore_ascend安装成功。

[[[[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]][[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]][[2. 2. 2. 2.][2. 2. 2. 2.][2. 2. 2. 2.]]]]

4.3 方法三

ascend310_single_op_sample

这是一个[1, 2, 3, 4][2, 3, 4, 5]相加的简单样例,代码工程目录结构如下:

└─ascend310_single_op_sample├── CMakeLists.txt                    // 编译脚本├── README.md                         // 使用说明├── main.cc                           // 主函数└── tensor_add.mindir                 // MindIR模型文件
unzip ascend310_single_op_sample.zip
cd ascend310_single_op_sample# 编译
cmake . -DMINDSPORE_PATH=`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`
make# 执行
./tensor_add_sample

如果输出以下结果,则说明mindspore_ascend安装成功。

3
5
7
9

四、测试代码

1. 示例一

用MindSpore搭建模型,并进行测试。

"""
MindSpore implementation of `MobileNetV1`.
Refer to MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
"""
import timefrom mindspore import nn, Tensor, ops
import mindspore.common.initializer as init
import mindspore as ms
from PIL import Image
from mindcv.data import create_transforms
import numpy as npdef depthwise_separable_conv(inp: int, oup: int, stride: int) -> nn.SequentialCell:return nn.SequentialCell(# dwnn.Conv2d(inp, inp, 3, stride, pad_mode="pad", padding=1, group=inp, has_bias=False),nn.BatchNorm2d(inp),nn.ReLU(),# pwnn.Conv2d(inp, oup, 1, 1, pad_mode="pad", padding=0, has_bias=False),nn.BatchNorm2d(oup),nn.ReLU(),)class MobileNetV1(nn.Cell):r"""MobileNetV1 model class, based on`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_Args:alpha: scale factor of model width. Default: 1.in_channels: number the channels of the input. Default: 3.num_classes: number of classification classes. Default: 1000."""def __init__(self,alpha: float = 1.,in_channels: int = 3,num_classes: int = 1000) -> None:super().__init__()input_channels = int(32 * alpha)# Setting of depth-wise separable conv# c: number of output channel# s: stride of depth-wise convblock_setting = [# c, s[64, 1],[128, 2],[128, 1],[256, 2],[256, 1],[512, 2],[512, 1],[512, 1],[512, 1],[512, 1],[512, 1],[1024, 2],[1024, 1],]features = [nn.Conv2d(in_channels, input_channels, 3, 2, pad_mode="pad", padding=1, has_bias=False),nn.BatchNorm2d(input_channels),nn.ReLU()]for c, s in block_setting:output_channel = int(c * alpha)features.append(depthwise_separable_conv(input_channels, output_channel, s))input_channels = output_channelself.features = nn.SequentialCell(features)# self.pool = GlobalAvgPooling()self.pool = nn.AdaptiveAvgPool2d(output_size=(1, 1))self.classifier = nn.Dense(input_channels, num_classes)self._initialize_weights()def _initialize_weights(self) -> None:"""Initialize weights for cells."""for _, cell in self.cells_and_names():if isinstance(cell, nn.Conv2d):cell.weight.set_data(init.initializer(init.XavierUniform(),cell.weight.shape,cell.weight.dtype))if isinstance(cell, nn.Dense):cell.weight.set_data(init.initializer(init.TruncatedNormal(),cell.weight.shape,cell.weight.dtype))def forward_features(self, x: Tensor) -> Tensor:x = self.features(x)return xdef forward_head(self, x: Tensor) -> Tensor:squeeze = ops.Squeeze(0)x = squeeze(x)x = self.pool(x)squeeze = ops.Squeeze(2)x = squeeze(x)x = x.transpose()x = self.classifier(x)return xdef construct(self, x: Tensor) -> Tensor:x = self.forward_features(x)x = self.forward_head(x)return xdef mobilenet_v1_100_224(pretrained: bool = False, num_classes: int = 1000, in_channels=3, **kwargs) -> MobileNetV1:"""Get MobileNetV1 model without width scaling.Refer to the base class `models.MobileNetV1` for more details."""model = MobileNetV1(alpha=1.0, in_channels=in_channels, num_classes=num_classes, **kwargs)return modelif __name__ == '__main__':# ms.set_context(device_target='GPU')# ms.set_context(device_target='CPU')ms.set_context(device_target="Ascend")ms.set_context(device_id=0)ms.set_seed(1)ms.set_context(mode=ms.PYNATIVE_MODE)img = Image.open("image.jpg").convert("RGB")# create transformtransform_list = create_transforms(dataset_name="imagenet",is_training=False,)transform_list.pop(0)for transform in transform_list:img = transform(img)img = np.expand_dims(img, axis=0)# create modelnetwork = mobilenet_v1_100_224()for i in range(100):# warmupnetwork(ms.Tensor(img))time_begin = time.time()for i in range(1000):# predictnetwork(ms.Tensor(img))time_total = (time.time() - time_begin) * 1000 / 1000print(f"total time is: {time_total}")# print(network)

2. 示例二

调用 mindcv库中的预训练模型进行测试。

"""MindSpore Inference Script
"""import numpy as np
from PIL import Imageimport mindspore as msfrom mindcv.data import create_transforms
from mindcv.models import create_model
import time# ms.set_context(device_target='CPU')
# ms.set_context(device_target='GPU')ms.set_context(device_target='Ascend')
ms.set_context(device_id=0)
ms.set_context(max_device_memory="3.5GB")def main():ms.set_seed(1)ms.set_context(mode=ms.PYNATIVE_MODE)img = Image.open("image.jpg").convert("RGB")# create transformtransform_list = create_transforms(dataset_name="imagenet",is_training=False,)transform_list.pop(0)for transform in transform_list:img = transform(img)img = np.expand_dims(img, axis=0)# create modelnetwork = create_model(model_name="mobilenet_v1_100",  # mobilenet_v1_100_224pretrained=False,)network.set_train(False)for i in range(100):# warmupnetwork(ms.Tensor(img))time_begin = time.time()for i in range(1000):# predictnetwork(ms.Tensor(img))time_total = (time.time() - time_begin) * 1000 / 1000print(f"total time is: {time_total}")if __name__ == "__main__":main()

五、FAQ

Q:RuntimeError: Load op info form json config failed, version: Ascend310B4

[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:28.302.942 [mindspore/run_check/_check_version.py:375] MindSpore version 2.1.1 and "te" wheel package version 7.0 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:28.305.619 [mindspore/run_check/_check_version.py:382] MindSpore version 2.1.1 and "hccl" wheel package version 7.0 does not match. For details, refer to the installation guidelines: https://www.mindspore.cn/install
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:28.305.849 [mindspore/run_check/_check_version.py:396] Please pay attention to the above warning, countdown: 3
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:29.307.139 [mindspore/run_check/_check_version.py:396] Please pay attention to the above warning, countdown: 2
[WARNING] ME(230369:255086392991776,MainProcess):2024-05-25-17:29:30.308.249 [mindspore/run_check/_check_version.py:396] Please pay attention to the above warning, countdown: 1
[ERROR] KERNEL(230369,e7ffaf56f120,python):2024-05-25-17:29:35.761.869 [mindspore/ccsrc/kernel/oplib/op_info_utils.cc:172] LoadOpInfoJson] Get op info json suffix path failed, soc_version: Ascend310B4
[ERROR] KERNEL(230369,e7ffaf56f120,python):2024-05-25-17:29:35.762.199 [mindspore/ccsrc/kernel/oplib/op_info_utils.cc:111] GenerateOpInfos] Load op info json failed, version: Ascend310B4
Traceback (most recent call last):File "/root/Downloads/mindspore_ascend_demo.py", line 8, in <module>print(ops.add(x, y))File "/usr/local/miniconda3/envs/mindspore22/lib/python3.9/site-packages/mindspore/common/_stub_tensor.py", line 49, in funreturn method(*arg, **kwargs)File "/usr/local/miniconda3/envs/mindspore22/lib/python3.9/site-packages/mindspore/common/tensor.py", line 486, in __str__return str(self.asnumpy())File "/usr/local/miniconda3/envs/mindspore22/lib/python3.9/site-packages/mindspore/common/tensor.py", line 924, in asnumpyreturn Tensor_.asnumpy(self)
RuntimeError: Load op info form json config failed, version: Ascend310B4----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_kernel_runtime.cc:431 Init[ERROR] PIPELINE(230369,e7ffedd76020,python):2024-05-25-17:29:35.824.442 [mindspore/ccsrc/pipeline/jit/pipeline.cc:2311] ClearResAtexit] Check exception before process exit: Load op info form json config failed, version: Ascend310B4----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/plugin/device/ascend/hal/device/ascend_kernel_runtime.cc:431 Init

mindspore_ascend 2.1.1 测试失败。

Q:RuntimeError: The device address type is wrong: type name in address:CPU, type name in context:Ascend

RuntimeError: The device address type is wrong: type name in address:CPU, type name in context:Ascend----------------------------------------------------
- C++ Call Stack: (For framework developers)
----------------------------------------------------
mindspore/ccsrc/plugin/device/ascend/hal/hardware/ge_device_res_manager.cc:72 AllocateMemory

mindspore_ascend 2.2.0 测试失败。

http://www.yayakq.cn/news/265330/

相关文章:

  • 临夏州建设网站wordpress图片_转移oss
  • 建网站空间wordpress伪静态标签
  • 狠狠做网站改成什么了下载小程序到微信
  • html网站开发流程营销型网站搭建公司
  • 专业网站制作的公司哪家好购彩网站建设
  • 高端网站建设价格移动网站适配
  • 门户网站优化怎么做网站登不上去的原因
  • 郑州建设网店网站坪山网站建设行业现状
  • Python用数据库做网站萍乡网站建设
  • 网站需求建设关系书宿迁房产网安居客
  • 自己做的网站字体变成方框上海发乐门网站建设公司
  • 关键词搜索爱站网怎么开发wordpress子主题
  • 企业网站建设知识新站整站优化
  • 汉中定制网站建设公司郴州网络推广服务
  • 沧州做网站费用网站建设项目的网络图
  • 手机网站菜单广州哪些做网站的公司
  • 广州三合一网站建设怎么制作图片表格
  • 深圳市推广网站的公司wordpress impreza
  • 公司做网站服务费怎样做账斗门网站建设
  • 玉环建设局网站app推广联盟平台
  • 西安 网站开发 招聘关键词搜索工具好站网
  • 专做定制网站建设福州商城网站开发公司
  • 杭州网站seo推广软件网站建设 流程图
  • 网站备案多久过期wordpress 知识库
  • 管理网站怎么做的做链接哪个网站好
  • 商城系统网站模板专门做国外家具书籍的网站
  • 保山市城市建设网站洛克设计平台
  • 档案门户网站建设方案搜索引擎有哪些平台
  • 个人网站的建设方法和过程简约大气网站首页
  • 免费下软件的网站济南企业做网站推广网站