当前位置: 首页 > news >正文

昆明哪个公司做网站建设最好江西人才招聘网官网

昆明哪个公司做网站建设最好,江西人才招聘网官网,如何快速的建设网站,wordpress 第三方目录 一,什么是并查集 二,并查集的结构 三,并查集的代码实现 1,并查集的大致结构和初始化 2,find操作 3,Union操作 4,优化 小结: 四,并查集的应用场景 省份…

目录

一,什么是并查集

二,并查集的结构 

三,并查集的代码实现 

1,并查集的大致结构和初始化

2,find操作 

3,Union操作

4,优化 

小结:

四,并查集的应用场景

省份数量[OJ题] 


一,什么是并查集

核心概念:并查集是一种 用于管理元素分组 的数据结构。

在一些应用问题中,需将n个不同的元素划分成一些不相交的集合,开始时,n个元素各自成一个集合,然后按照一定规律将部分集合合成一个集合,也就是集合合并并查集(union-find)适合来描述这类问题。

对于并查集,我们可以将它看成是一个森林,森林是由多棵树组成的,并查集中的一个个集合就可以看作是树。

示例:

二,并查集的结构 

并查集的存储结构和树的双亲表示法相似。

所谓双亲表示法,就是在树的节点中,只存储父节点的指针,不存储孩子节点的指针。通过指针可以找到父节点。因为对于一颗树来说,可能有多个孩子 ,但只有一个父节点。

 

对于上图中:

节点0的数组值为-4,说明该节点为根节点。

节点6的数组值为0,说明该节点的父节点为0。

节点7的数组值为0,说明该节点的父节点为0。

节点8的数组值为0,说明该节点的父节点为0。

三,并查集的代码实现 

并查集主要支持一下操作:

  • 查询(find),查询一个元素在哪个集合中。
  • 合并(union),将两个集合合并为一个。

1,并查集的大致结构和初始化

class UnionFind
{
public:
    UnionFind(size_t n)
        :_ufs(n,-1)
    {}

    //......
private:
    vector<int> _ufs;
};

2,find操作 

在并查集中找到包含x的根

int findRoot(int x)
{
    int root = x;

    while (_ufs[root] >= 0)
        root = _ufs[root];

    return root;
}
 

3,Union操作

合并两个集合

void Union(int x1, int x2)
{
    int root1 = findRoot(x1);
    int root2 = findRoot(x2);
    if (root1 == root2)
        return; //在同一个集合中

    //这里在合并的时候采用数据量小的向数据量大的合并
    //也就是小树向大树合并
    if (abs(_ufs[root1]) < abs(_ufs[root2]))//root1节点更少
    {
        _ufs[root2] += _ufs[root1];
        _ufs[root1] = root2;   //小树合并到大树
    }
    else
    {
        //root2节点更少
        _ufs[root1] += _ufs[root2];
        _ufs[root2] = root1;
    }
}

4,优化 

当树比较高时,我们在反复查某个节点的根节点时,每次都会花费大量时间。

优化方法路径压缩,只要查找某个节点一次,就将查找路径上的所有节点挂到根节点下面。

如图:查找D的根A,查找路径上包含节点B,将节点D和节点B直接挂在根节点A的下面。

//路径压缩
int findRoot(int x)
{int root = x;while (_ufs[root] >= 0)root = _ufs[root];//路径压缩while (_ufs[x] >= 0){int parent = _ufs[x];_ufs[x] = root;   //挂在根节点的下面x = parent;}return root;
}

小结:

上述实现的并查集,支持连续元素。如果是处理非连续元素,需要使用哈希表代替数组(需额处理元素与索引的映射)。

核心思路:

  • 哈希映射unordered_map将任意类型元素映射为连续整数ID,内部用数组管理父节点
  • 动态扩容:自动添加新元素,无需预先指定规模。

  • 模板化:支持泛型数据类型(如string等)。

四,并查集的应用场景

  1. 连通性检测:判断网络中两个节点是否连通。

  2. 最小生成树(Kruskal算法):动态合并边,避免环。

  3. 社交网络分组:快速合并好友关系,查询是否属于同一社交圈。

总结:

并查集通过高效的查找与合并操作,成为处理动态连通性问题的核心数据结构。其优化方法(路径压缩、按秩合并)确保了接近常数的单次操作时间复杂度,适用于大规模数据场景。

其中的按秩合并就是合并集合时小树向大树合并。

省份数量[OJ题] 

题目链接:LCR 116. 省份数量 - 力扣(LeetCode)

 isConnected[i][j]=1,表示城市i和j连通,连通的城市为一个省份。用并查集将连通的数据放入一个集合,再统计最后的集合个数即可。

class Solution {
public:int findCircleNum(vector<vector<int>>& isConnected) {int n=isConnected.size();vector<int> _ufs(n,-1);//查找根auto find=[&](int x)->int{int root=x;while(_ufs[root]>=0)root=_ufs[root];return root;};for(int i=0;i<n;i++)for(int j=0;j<n;j++){if(isConnected[i][j]==1){//合并i和j集合int rooti=find(i),rootj=find(j);if(rooti!=rootj){_ufs[rooti]+=_ufs[rootj];_ufs[rootj]=rooti;}}}//统计集合数int ret=0;for(auto x:_ufs){if(x<0)ret++;}return ret;}
};

冗余连接[OJ题]

题目链接:684. 冗余连接 - 力扣(LeetCode)

class Solution {
public:vector<int> findRedundantConnection(vector<vector<int>>& edges) {//遍历edges数组//将在同一条边中的两个顶点放入一个集合//如果这条边的两个顶点已经在同一个集合中,加入这条边后,会出现环 ,返回这条边vector<int> ufs(1010);int sz=edges.size();//初始化时各元素自成一个集合,自己就是根for(int i=0;i<sz;i++)ufs[i]=i;for(int j=0;j<sz;j++){//找到边的两个顶点所在的集合,也就是根节点int root1=find(edges[j][0],ufs);int root2=find(edges[j][1],ufs);//如果在一个集合,加入这条边后,会出现环if(root1==root2)return edges[j];else{//两个集合独立,合并两个集合ufs[root1]=root2;}}return {0,0};}int find(int num,vector<int>& ufs){int root=num;while(ufs[root]!=root)root=ufs[root];return root;}
};

等式方程的可满足性[OJ题]

本题链接:990. 等式方程的可满足性 - 力扣(LeetCode)

class Solution {
public:bool equationsPossible(vector<string>& equations) {//并查集vector<int> ufs(26,-1);auto findroot=[&](int x){int parent=x;while(ufs[parent]>=0)parent=ufs[parent];return parent;};//将相等的放入同一集合中for(auto& str:equations)if(str[1]=='='){int root1=findroot(str[0]-'a');int root2=findroot(str[3]-'a');if(root1!=root2){ufs[root1]+=ufs[root2];ufs[root2]=root1;}}//遇到!,如果在同一个集合,返回falsefor(auto& str:equations){if(str[1]=='!'){int root1=findroot(str[0]-'a');int root2=findroot(str[3]-'a');if(root1==root2)return false;}}return true;}
};

 

http://www.yayakq.cn/news/658820/

相关文章:

  • 宿迁网站建设介绍公司公司注册查询网
  • 广西柳州网站制作公司wordpress最新版新建页面选择模板
  • 手机网站开发源码网站免费源码下载
  • 黑色门户网站源码南宁做网站找哪家好
  • 北京建设主管部门官方网站怎么建立公司网站平台
  • 湖州市建设局网站做外贸常用的网站
  • 微信订阅号不认证可以做网站吗长沙制作网站公司
  • 网站后台怎么建设在直播网站做前端注意
  • 网站建设硬件要求一家做运动鞋的网站好
  • 云南外贸建站推广公司注册信息怎么查
  • 化妆品网站开发的外文翻译wordpress免费企业资讯主题
  • 优秀网站推荐wordpress 列表页面
  • 网站页面设计好了后台如何添加简单网站制作步骤
  • 郑州网站制作公司名单word后的网站引用怎么做
  • 介绍移动互联网的网站有哪些wordpress .mo .po
  • 福田企业网站优化方案乐亭网站建设
  • 在线旅游网站开发分析报告东莞企石网站建设
  • 网站建设资料自建站是什么意思
  • 邯郸网站优化怎么做微信小程序
  • 建设网站需要哪些硬件西安不动产查询房产信息网
  • 网站有哪些平台网站突然不被百度收录
  • 手机网站底部导航菜单可做产品预售的网站
  • 网站建设策划书前言东莞服务行业推广软件
  • 安徽房和城乡建设部网站网页设计怎么让图片横向填满
  • 网站下载免费软件安装深圳专业做网站排名多少钱
  • 做网站优化选阿里巴巴还是百度遂宁市做网站的公司
  • 武隆网站建设seo平台怎么样
  • 如何让百度快照找到自己的网站化妆品网站建设可行性报告
  • 网站运营小结开源saas建站系统
  • 网站开发倒计时北京网站制作推广