当前位置: 首页 > news >正文

网站开发后期维护更新用iis做的网站怎么更改端口

网站开发后期维护更新,用iis做的网站怎么更改端口,如何优化网站到首页优化,c2c的含义分别是什么283. 移动零 leetcode链接:https://leetcode.cn/problems/move-zeroes/ 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。请注意 ,必须在不复制数组的情况下原地对数组进行操作。示例 1:…

283. 移动零

leetcode链接:https://leetcode.cn/problems/move-zeroes/

给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。请注意 ,必须在不复制数组的情况下原地对数组进行操作。示例 1:输入: nums = [0,1,0,3,12]
输出: [1,3,12,0,0]
示例 2:输入: nums = [0]
输出: [0]
提示:1 <= nums.length <= 104
-231 <= nums[i] <= 231 - 1
进阶:你能尽量减少完成的操作次数吗?

这题就是一个典型的快慢指针问题,类似于从数组中删除指定元素。快指针依次遍历,慢指针用来存放元素。思路就是先把所有的0元素删除,再在数组末位填充0,代码如下:

class Solution {
public:void moveZeroes(vector<int>& nums) {int slow = 0;for(int  i = 0 ; i < nums.size(); i++){if(nums[i] != 0){nums[slow++] =nums[i];}}//把剩下的位置填充为0for(int i = slow; i < nums.size(); i++){nums[i] = 0;}}
};

11.盛最多水的容器

给定一个长度为 n 的整数数组 height 。
有 n 条垂线,第 i 条线的两个端点是 (i, 0)(i, height[i]) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。说明:你不能倾斜容器。

这题是贪心算法,

  1. 接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。示例 1:输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 
示例 2:输入:height = [4,2,0,3,2,5]
输出:9

image

对于这种问题,我们不要想整体,而应该去想局部。仅仅对于位置 i,能装下多少水呢?

image

能装 2 格水,因为 height[i] 的高度为 0,而这里最多能盛 2 格水,2-0=2。

为什么位置 i 最多能盛 2 格水呢?因为,位置 i 能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为 l_maxr_max位置 i 最大的水柱高度就是 min(l_max, r_max)

也就是说:

water[i] = min(# 左边最高的柱子max(height[0..i]),  # 右边最高的柱子max(height[i..end]) ) - height[i]

根据该思路写一个暴力解法。

暴力解法

class Solution {
public:int trap(vector<int>& height) {int res = 0;for(int i = 1; i < height.size() - 1; i++){//这样才能保证左右都有柱子int leftMax= 0, rightMax = 0;for (int j = i; j < height.size(); j++)rightMax = max(rightMax, height[j]);// 找左边最高的柱子for (int j = i; j >= 0; j--)leftMax = max(leftMax, height[j]);cout<< leftMax << ',' << rightMax << endl;res += max(0, min(leftMax,rightMax) - height[i]);}return res;}
};

时间复杂度O(n2),实际上不需要每次都遍历,可以借助备忘录。

这里实际上res加的时候时候不需要和0比较,因为在计算 l_max 数组的时候是取「自己高度」和「目前左边最高」的最大值,因此 l_max[i] >= height[i] 是恒成立的。r_max 同理。

备忘录

不用每次都计算left和right,计算一次就好,存储在两个数组中:

class Solution {
public:int trap(vector<int>& height) {if (height.size() == 0) {return 0;}int res = 0;vector<int> leftMax(height.size(), 0);vector<int> rightMax(height.size(), 0);leftMax[0] = height[0];rightMax[height.size() - 1] = height[height.size() - 1];for(int i = 1; i < height.size() - 1; i++){//这样才能保证左右都有柱子leftMax[i] = max(height[i], leftMax[i - 1]);}for(int i = height.size() - 2; i >= 0; i--){rightMax[i] = max(height[i], rightMax[i + 1]);}for(int i = 1; i < height.size() - 1; i++){res += min(leftMax[i],rightMax[i]) - height[i];}return res;}
};

把时间复杂度降低为 O(N),已经是最优了,但是空间复杂度是 O(N)。双指针法可以把空间复杂度降到O(1)。

双指针法

之前不管是暴力解法还是备忘录,leftMax和rightMax分别代表 height[0..i]height[i..end] 的最高柱子高度:

image

而在双指针法中,代表的是 height[0..left]height[right..end] 的最高柱子高度:

image

我们只在乎 min(l_max, r_max)对于上图的情况,我们已经知道 l_max < r_max 了,至于这个 r_max 是不是右边最大的,不重要。重要的是 height[i] 能够装的水只和较低的 l_max 之差有关。

最终代码:

class Solution {
public:int trap(vector<int>& height) {int left = 0, right = height.size() - 1;int leftMax = 0, rightMax = 0;int res = 0;while (left < right) {leftMax = max(leftMax, height[left]);rightMax = max(rightMax, height[right]);// res += min(leftMax, rightMax) - height[i]if (leftMax < rightMax) {res += leftMax - height[left];left++;} else {res += rightMax - height[right];right--;}}return res;}
};

11. 盛最多水的容器

给定一个长度为 n 的整数数组 height 。有 n 条垂线,
第 i 条线的两个端点是 (i, 0)(i, height[i]) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。说明:你不能倾斜容器。

image

输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49

跟上面的题类似,直接贴代码:

class Solution {
public:int maxArea(vector<int>& height) {int res = 0;int left = 0, right = height.size() - 1;while(left < right){res = max(res, min(height[left], height[right]) * (right - left));if(height[left] < height[right]){left++;}else{right--;}}return res;}
};

这里要注意双指针的移动顺序,为什么是往height[i]小的那边移动?因为矩形的最大面积是由最短的那条边决定的:如果移动较低的那一边,那条边可能会变高,使得矩形的高度变大,进而就「有可能」使得矩形的面积变大;相反,如果你去移动较高的那一边,矩形的高度是无论如何都不会变大的,所以不可能使矩形的面积变得更大。

总结

感觉这样复习还是太零散没有体系了,从明天开始,还是按照模块来,先把原来的题二刷掉,然后再找拓展题。

http://www.yayakq.cn/news/210457/

相关文章:

  • 八宝山做网站的公司手机最新发布
  • 大型企业网站欣赏银川公司做网站
  • 建网站价格 优帮云怎么做dj网站
  • 网站估值怎么做济南微网站开发
  • 网站优化检测如何搭建平台运营体系
  • 网站封面制作美橙极速建站系统
  • 网站开发质保金山东城市建设职业学院教务网网站
  • 惠州企业建站模板买外链有用吗
  • 网站去掉后缀html深圳外贸网站外贸网站建设
  • 常州网站建设怎么样网络推广培训资料
  • 做设计的分析图网站有哪些京紫元年深圳网站建设
  • 宁德商城网站开发设计网站 linux 服务器配置
  • pc网站做成移动网站最好的书籍设计网站
  • 江西建设职业技术学院网站专业的深圳电商app开发
  • 最好的网站建设报价代驾小程序源码
  • 昆明网站建设优化技术公司网站建设须知
  • 建立大型网站国家高新技术企业公示名单
  • 网站建设 金疙瘩计划wordpress阿里云短信
  • 租用海外服务器的网站有域名吗网站开发系统的可行性研究报告
  • 企业品牌网站建设方案沈阳核工业建设工程总公司网站
  • 怎么做免费的产品图片网站手机版oa系统下载
  • 银川建设厅网站优酷网站怎么做的
  • 建设微网站平台无锡捷搜网站建设
  • 体彩网站建设简单的英文网站模板
  • 网站建设进度规划wordpress收费下载资源
  • 网站推广策划书包括哪些点南阳企业网站制作
  • 上海市住房与城乡建设部网站西楚房产网宿迁房产网
  • 2016手机网站制作规范中文域名是网站名称吗
  • 大安移动网站建设网站建设经典文章
  • 赣州专业企业网站建设成都建模培训