当前位置: 首页 > news >正文

网站内页设计专业素材网站

网站内页设计,专业素材网站,廊坊建站,个人简介目录 一,什么是并查集 二,并查集的结构 三,并查集的代码实现 1,并查集的大致结构和初始化 2,find操作 3,Union操作 4,优化 小结: 四,并查集的应用场景 省份…

目录

一,什么是并查集

二,并查集的结构 

三,并查集的代码实现 

1,并查集的大致结构和初始化

2,find操作 

3,Union操作

4,优化 

小结:

四,并查集的应用场景

省份数量[OJ题] 


一,什么是并查集

核心概念:并查集是一种 用于管理元素分组 的数据结构。

在一些应用问题中,需将n个不同的元素划分成一些不相交的集合,开始时,n个元素各自成一个集合,然后按照一定规律将部分集合合成一个集合,也就是集合合并并查集(union-find)适合来描述这类问题。

对于并查集,我们可以将它看成是一个森林,森林是由多棵树组成的,并查集中的一个个集合就可以看作是树。

示例:

二,并查集的结构 

并查集的存储结构和树的双亲表示法相似。

所谓双亲表示法,就是在树的节点中,只存储父节点的指针,不存储孩子节点的指针。通过指针可以找到父节点。因为对于一颗树来说,可能有多个孩子 ,但只有一个父节点。

 

对于上图中:

节点0的数组值为-4,说明该节点为根节点。

节点6的数组值为0,说明该节点的父节点为0。

节点7的数组值为0,说明该节点的父节点为0。

节点8的数组值为0,说明该节点的父节点为0。

三,并查集的代码实现 

并查集主要支持一下操作:

  • 查询(find),查询一个元素在哪个集合中。
  • 合并(union),将两个集合合并为一个。

1,并查集的大致结构和初始化

class UnionFind
{
public:
    UnionFind(size_t n)
        :_ufs(n,-1)
    {}

    //......
private:
    vector<int> _ufs;
};

2,find操作 

在并查集中找到包含x的根

int findRoot(int x)
{
    int root = x;

    while (_ufs[root] >= 0)
        root = _ufs[root];

    return root;
}
 

3,Union操作

合并两个集合

void Union(int x1, int x2)
{
    int root1 = findRoot(x1);
    int root2 = findRoot(x2);
    if (root1 == root2)
        return; //在同一个集合中

    //这里在合并的时候采用数据量小的向数据量大的合并
    //也就是小树向大树合并
    if (abs(_ufs[root1]) < abs(_ufs[root2]))//root1节点更少
    {
        _ufs[root2] += _ufs[root1];
        _ufs[root1] = root2;   //小树合并到大树
    }
    else
    {
        //root2节点更少
        _ufs[root1] += _ufs[root2];
        _ufs[root2] = root1;
    }
}

4,优化 

当树比较高时,我们在反复查某个节点的根节点时,每次都会花费大量时间。

优化方法路径压缩,只要查找某个节点一次,就将查找路径上的所有节点挂到根节点下面。

如图:查找D的根A,查找路径上包含节点B,将节点D和节点B直接挂在根节点A的下面。

//路径压缩
int findRoot(int x)
{int root = x;while (_ufs[root] >= 0)root = _ufs[root];//路径压缩while (_ufs[x] >= 0){int parent = _ufs[x];_ufs[x] = root;   //挂在根节点的下面x = parent;}return root;
}

小结:

上述实现的并查集,支持连续元素。如果是处理非连续元素,需要使用哈希表代替数组(需额处理元素与索引的映射)。

核心思路:

  • 哈希映射unordered_map将任意类型元素映射为连续整数ID,内部用数组管理父节点
  • 动态扩容:自动添加新元素,无需预先指定规模。

  • 模板化:支持泛型数据类型(如string等)。

四,并查集的应用场景

  1. 连通性检测:判断网络中两个节点是否连通。

  2. 最小生成树(Kruskal算法):动态合并边,避免环。

  3. 社交网络分组:快速合并好友关系,查询是否属于同一社交圈。

总结:

并查集通过高效的查找与合并操作,成为处理动态连通性问题的核心数据结构。其优化方法(路径压缩、按秩合并)确保了接近常数的单次操作时间复杂度,适用于大规模数据场景。

其中的按秩合并就是合并集合时小树向大树合并。

省份数量[OJ题] 

题目链接:LCR 116. 省份数量 - 力扣(LeetCode)

 isConnected[i][j]=1,表示城市i和j连通,连通的城市为一个省份。用并查集将连通的数据放入一个集合,再统计最后的集合个数即可。

class Solution {
public:int findCircleNum(vector<vector<int>>& isConnected) {int n=isConnected.size();vector<int> _ufs(n,-1);//查找根auto find=[&](int x)->int{int root=x;while(_ufs[root]>=0)root=_ufs[root];return root;};for(int i=0;i<n;i++)for(int j=0;j<n;j++){if(isConnected[i][j]==1){//合并i和j集合int rooti=find(i),rootj=find(j);if(rooti!=rootj){_ufs[rooti]+=_ufs[rootj];_ufs[rootj]=rooti;}}}//统计集合数int ret=0;for(auto x:_ufs){if(x<0)ret++;}return ret;}
};

http://www.yayakq.cn/news/103303/

相关文章:

  • 怎样增加网站会员量wordpress添加时间轴
  • 长春哪家网络公司做网站专业天津圣辉友联做网站
  • 品展示设计网站哪些网站专做新闻
  • 学校网站建设考评办法一个微信小程序大概多少钱
  • 新浪 博客可以做网站优化吗网站建设 制作教程
  • 自己如何制作网站西安竞价托管
  • 网站注册实名制怎么做橱柜衣柜做网站
  • 学做吃的网站dede5.7内核qq个性门户网站源码
  • 瓜子网网站建设策划书加拿大28平台微信
  • 东莞网站定制专业教学资源库网站建设工作
  • seo下载站深圳免费网站建设服务
  • 各大网站搜索引擎织梦网站后台使用说明书
  • 营销型网站建设实战》汕头中文建站模板
  • 网站建设书籍免费抖音搜索关键词排名
  • 山西网站推广公司国内做新闻比较好的网站有哪些
  • 网站建设与优化推广方案内容搭设企业网站教程
  • 免费行情网站的推荐理由甘肃省第八建设集团公司网站
  • html5 公司网站模板论学院网站建设项目的进度管理制度
  • 保定专业做网站公司android 网站模板
  • 资阳建设网站广州的企业网站建设
  • 网站数据库一般多大南昌网站建设案例
  • 网站seo外链怎么做网站html地图制作
  • 做网站卖广告校园网站建设情况说明书
  • 一起做业官方网站唐山免费做网站
  • 隆基泰和 做网站淘宝客网站需要多大空间
  • 番禺网站建设培训班建设网站网站设计
  • 新公司需要做网站黄冈网站建设效果
  • 深圳广东网站建设套餐网站开发是什么语言
  • 福建福清市住房和建设局网站网页设计实训报告记录和结果分析
  • 百度企业云网站建设网站建设顶层设计