当前位置: 首页 > news >正文

网站建设实训要求北京网站建设方案建设公司

网站建设实训要求,北京网站建设方案建设公司,9377页游官网,怎么搭建网站平台这篇发表于2020 WWW 上的会议论文,提出一种MNS方式的负样本采样方法。众所周知,MF方法难以解决冷启动问题,于是进化出双塔模型,但是以双塔模型为基础的召回模型的好坏十分依赖负样本的选取。为了解决Batch内负样本带来的选择性偏差…

这篇发表于2020 WWW 上的会议论文,提出一种MNS方式的负样本采样方法。众所周知,MF方法难以解决冷启动问题,于是进化出双塔模型,但是以双塔模型为基础的召回模型的好坏十分依赖负样本的选取。为了解决Batch内负样本带来的选择性偏差问题,本文提出MNS方法融合了批采样和均匀采样。实验表明,配合这种负样本的采样的双塔模型的召回能力得到了明显提升。

在这里插入图片描述

1. 贡献

  • 本文提出一种新颖的负样本采样方法——MNS (Mixed Negative Sampling),用于缓解训练模型负样本的 selection bias问题。
    [图片]
    在这里插入图片描述

  • MNS这一方法的主要是与之前通用的 batch / unigram sampling methods(这两部分详见后面的介绍) 相比较。

2. 思想

2.1 历史方法

有许多工作在研究基于Embedding的信息检索。其中的典型工作就是MF。

  • MF的关键问题在于冷启动;(i.e. it’s hard for this method to generalize to items that have no user interaction.)
    于是人们想到的方法是利用content feature 去建模,从而避免这种对互动的依赖,从而引出了双塔模型。content feature 范围很广。作者在文中给出了一些示例:For instance, content features of an app could be text descriptions, creators, categories, etc.

2.2 当前方法

新提出的双塔模型(Dual Encoder)方法架构如下:
[图片]
但新的架构又出现了新的问题:大家发现,对于双塔模型来说,其关键在于负样本的选取。
[图片]

其背后的原因是:

  • 正样本(用户参与点击、互动、反馈)很好收集,负样本则很难(一是因为负样本太多,二是因为负样本不直观)。
    之前的负样本采样方法主要是:
    • unigram sampling:
    • batch negatives :【也就是用同一batch类的样本做负样本】
      batch negatives方法存在的问题有:
      (1)训练数据的选择偏差(selection bias)。batch negatives的弊端很明显:因为用同batch内的正样本做为其它对的负样本就会导致负样本选择过于局限的问题(因为正样本要么是新热高时鲜、要么就是质量好的,无法代表用户不想点击的那波负样本)。
      [图片]

(2)采样函数缺少灵活性
batch negatives 方法受限于训练数据的分布,但是这个训练数据又是根据用户的点击得到,很难被直接调整。

同时hierarchical softmax 和 sampled softmax 均不适合训练双塔结构,原因是:

这个地方我没理解。

如果我们将召回问题视作是一个多分类问题,也就是如下表述:
在这里插入图片描述

那么在反向传播更新梯度的时候,就会遇到一个问题——很难在低时间复杂度的情况下计算出梯度;原因见作者在文中给出的一个推导:
在这里插入图片描述

这个推导说明的是:在庞大的语料库中,求出第二项是不切实际的(而这第二项又是更新梯度的关键项)。作者原文用的话是:It is generally impractical to compute the second term over all items in a huge corpus.

综合分析上述种种,本文提出方法:In particular, in addition to the negatives sampled from batch training data, we uniformly sample negatives from the candidate corpus to serve as additional negatives. 该方法简称 MNS。

MNS 的优势在于:

  • 通过引入全局负样本(因为作者使用了均匀负采样),缓解选择偏差问题。
  • 调整采样分布,通过改变额外的负样本的数目。
    MNS的思想简图如下所示:
    [图片]

3. 实验

3.1 实验细节

在这里插入图片描述

3.2 实验结果

实验结果从如下几个方面进行考量:

  • 离线Recall@K指标表明MNS明显地提升了检索质量;在线指标表明带来更多的高质量app安装(本文的场景应该是谷歌play,用于app 推荐)。
  • 在线指标(AB实验)

3.2.1 比较模型性能

观察的结论:

  • Two-tower with Batch Negatives 比 MLP with Sampled Softmax 的效果都要差。Batch Negatives 的这版模型召回了非常多的不相关的长尾app(这也与作者前文所述的 selection bias 相符合。背后的真实原因就是:Low-quality tail apps do not appear as negatives frequent enough.)

3.2.2 取MNS的超参数

前文说到:要对不常见的样本进行采样,那么采多少条呢?实验证明,在作者的这个场景中,取值是8192,这个可借鉴意义不大。

4. 疑问

  • 这里的with various formats 是什么意思?
  • unigram distribution是什么意思?
  • sampled softmax 是什么意思?
    有两篇论文可以参考学习:
  • label is associated with a rich set of content features.

5. 好句分享

  • a body of... 一群…
  • This paper lies in this line of work. 本文就是这一类研究工作之一。
  • Accordingly, sampling batch negatives only from training data will end up with a model lacking resolution for long-tail apps, which seldom appear in the training data.
    end up with 以 … 结束
http://www.yayakq.cn/news/548064/

相关文章:

  • 静态网站论文目录外贸 国外推广网站
  • 成都学网站建设费用wordpress占用
  • 河南微网站开发简单的网页设计教程
  • 网站编辑的工作内容长沙品牌网站建设
  • 简单建站织梦制作网站如何上线
  • 网站建设包含内容域名绑定网站提示正在建设
  • 网页站点设计网页设计参考书籍
  • 网站顶部菜单下拉固定wordpress edd插件
  • 揭阳专业的网站建设价格怎么样制作一个公众号
  • 怎么做网站发布产品百度文库官网首页
  • 自己接单做网站什么是网站网页主页
  • 青岛建设网站的公司网页qq属于什么
  • 网站导航栏三根横线怎么做的wordpress 图片
  • 做网站的工具+论坛单位网站源码
  • lamp网站怎么建设注册页面模板
  • 贵州门户网站建设公司建设个网站
  • 有了域名怎么制作网站建设一个商城网站的成本
  • 高端网站建设大概多少费用天堂w区服选择
  • 企业网站重要吗网站建设的功能需求分析策划书
  • jsp做简单校园网站安徽安庆天气预报15天
  • 建设网站推广有友情链接的网站
  • wordpress 站点描述dede做视频网站
  • 网站管理怎么做合肥知名建站公司
  • 建电子商务网站需要多少钱无锡市新吴区住房和建设交通局网站
  • 广东住房和城乡建设厅官方网站资源网站的建设方案
  • 院系网站建设具体要求学视频剪辑大概需要多少钱
  • 永春信息网站建设招标湖南建设银行网站是多少
  • 上海企业网站seo多少钱广告设计专业培训
  • 南阳免费网站建设引流推广是什么
  • 国外最好的设计网站做商品二维码检测的网站