当前位置: 首页 > news >正文

娱乐企业网站建设专业建站公司的业务内容

娱乐企业网站建设,专业建站公司的业务内容,ui设计工资怎么样,程序员都需要学什么Pandas库 基本概念读取数据数据处理数据输出其他常用功能 pip install pandas基本概念 数据结构 Series: 一维数据结构 import pandas as pd data pd.Series([10, 20, 30, 40], index[a, b, c, d]) print(data)DataFrame: 二维数据结构 data {Name: [Alice, Bob, Charlie],Ag…

Pandas库

      • 基本概念
      • 读取数据
      • 数据处理
      • 数据输出
      • 其他常用功能

pip install pandas

基本概念

  1. 数据结构

    • Series: 一维数据结构

      import pandas as pd
      data = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
      print(data)
      
    • DataFrame: 二维数据结构

      data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35]
      }
      df = pd.DataFrame(data)
      print(df)
      

读取数据

  1. 从 CSV 文件读取数据

    df = pd.read_csv('file.csv')
    print(df.head())
    
  2. 从 Excel 文件读取数据

    df = pd.read_excel('file.xlsx', sheet_name='Sheet1')
    print(df.head())
    
  3. 从 SQL 查询读取数据

    import sqlite3
    conn = sqlite3.connect('database.db')
    df = pd.read_sql_query('SELECT * FROM table', conn)
    print(df.head())
    

数据处理

  1. 查看数据

    • 查看前 5 行

      print(df.head())
      
    • 查看后 5 行

      print(df.tail())
      
    • 查看数据的简要信息

      print(df.info())
      
    • 查看数据的统计摘要

      print(df.describe())
      
  2. 选择和过滤数据

    • 按列选择

      print(df['Name'])
      
    • 按行选择

      print(df.loc[0])  # 按标签
      print(df.iloc[0])  # 按位置
      
    • 条件过滤

      filtered_df = df[df['Age'] > 30]
      print(filtered_df)
      
  3. 数据清洗

    • 处理缺失值

      df = df.dropna()  # 删除含缺失值的行
      df = df.fillna(0)  # 将缺失值填充为 0
      
    • 去重

      df = df.drop_duplicates()
      
    • 数据类型转换

      df['Age'] = df['Age'].astype(float)
      
  4. 数据操作

    • 添加列

      df['Country'] = 'USA'
      
    • 删除列

      df = df.drop('Country', axis=1)
      
    • 重命名列

      df = df.rename(columns={'Name': 'Full Name'})
      
  5. 数据聚合

    • 按组聚合

      grouped_df = df.groupby('Country').agg({'Age': 'mean'})
      print(grouped_df)
      
    • 合并数据

      df1 = pd.DataFrame({'ID': [1, 2], 'Value': ['A', 'B']})
      df2 = pd.DataFrame({'ID': [1, 2], 'Score': [85, 90]})
      merged_df = pd.merge(df1, df2, on='ID')
      print(merged_df)
      
    • 拼接数据

      df1 = pd.DataFrame({'Name': ['Alice', 'Bob']})
      df2 = pd.DataFrame({'Name': ['Charlie', 'David']})
      concatenated_df = pd.concat([df1, df2], ignore_index=True)
      print(concatenated_df)
      
  6. 数据排序

    • 按列排序

      sorted_df = df.sort_values(by='Age')
      print(sorted_df)
      
    • 排序方向

      sorted_df = df.sort_values(by='Age', ascending=False)
      print(sorted_df)
      

数据输出

  1. 保存为 CSV 文件

    df.to_csv('output.csv', index=False)
    
  2. 保存为 Excel 文件

    df.to_excel('output.xlsx', index=False)
    

其他常用功能

  1. 透视表

    pivot_table = pd.pivot_table(df, values='Age', index='Country', aggfunc='mean')
    print(pivot_table)
    
  2. 时间序列

    • 日期时间转换

      df['Date'] = pd.to_datetime(df['Date'])
      
    • 设置时间索引

      df = df.set_index('Date')
      
http://www.yayakq.cn/news/647347/

相关文章:

  • 怎么搭建自己的电影网站动漫设计师资格证
  • asp网站知道用户名是admin网站域名需要每年续费
  • 会做网站有什么可以做吗苏州网络公司微信开发
  • 深圳专业网站建设平台深圳专业网站制作费用
  • 做网站要不要营业执照临邑网站制作
  • 贵州城市建设网站想开个网站不知怎样做
  • 织梦网站模板官网前端开发可以做网站赚钱吗
  • 更新网站怎么弄建设卡开通网银网站
  • 网站域名和邮箱域名ps做网站的优点
  • 建设银行保定分行网站移动端响应式网站怎么做
  • 深圳有什么做招聘网站的公司吗上海中小企业发展服务中心
  • 有意义的网站低代码开发软件
  • 建站推广什么意思怎样在百度免费做网站
  • 做新媒体广告的网站广州平面设计
  • 做淘宝客必须有网站吗保定市最新消息今天
  • 有网站了怎么做app苏州晶体公司网站建设
  • 设计素材网站黄金烤肠短视频获客
  • 网站免费建站 图标wordpress dnax
  • 响应式企业网站设计与实现wordpress本地上传头像插件
  • 企业网站设计方案帮我搜一下长沙做网络销售
  • 群晖建站教程网站代码开发定制
  • 企业网站能起到什么作用简洁页面心情网站
  • 商标设计网站提供哪些服务crm软件是什么意思
  • 安福网站制作十大网文平台
  • 网站关键字优化技巧培训公司网站源码
  • 网站怎么做轮幕江苏免费建站
  • 信息管理系统网站开发7个优秀网站设计赏析
  • 杭州购物网站建设陕西网站建设方案优化
  • 网站开发技术总监面试题沭阳那家做网站的
  • 网站做sem推广时要注意什么意思网店怎么开网店