当前位置: 首页 > news >正文

房地产数据网站重庆建设门户网站

房地产数据网站,重庆建设门户网站,招标资源网官网,大型网站开发协调决战排序之巅(二) 排序测试函数 void verify(int* arr, int n) 归并排序递归方案代码可行性测试 非递归方案代码可行性测试 特点分析 计数排序代码实现代码可行性测试 特点分析 归并排序 VS 计数排序(Release版本)说明1w rand( ) …

决战排序之巅(二)

        • 排序测试函数 void verify(int* arr, int n)
    • 归并排序
      • 递归方案
          • 代码可行性测试
      • 非递归方案
          • 代码可行性测试
      • 特点分析
    • 计数排序
      • 代码实现
          • 代码可行性测试
      • 特点分析
    • 归并排序 VS 计数排序(Release版本)
      • 说明
        • 1w rand( ) 数据测试
        • 10w rand( ) 数据测试
        • 100w rand( ) 数据测试
        • 1000w rand( ) 数据测试
      • 测试代码
      • 结语

欢迎来到决战排序之巅栏目,
本期给大家带来的是归并排序与计数排序的实现与比较。
在上期决战排序之巅(一)中,给大家带来了插入排序(希尔) 与 选择排序(堆排) 的实现与比较,感兴趣的可以看看。

请添加图片描述

排序测试函数 void verify(int* arr, int n)

主要功能:测试arr数组中的顺序是否全为非升序的顺序。
代码如下:

void verify(int* arr, int n)
{for (int i = 1; i < n; i++){assert(arr[i] >= arr[i - 1]);}
}

如果arr数组中顺序不全为非升序,则assert()直接终止程序;
若全为非升序,则程序可通过该函数。

归并排序

基本思想:采用分治算法,将已有的有序子序列进行合并,得到完全有序的序列;即先使每个子序列有序,再使子序列所合并的序列有序。
归并排序的核心步骤就是:分解与合并。

递归方案

如下图所示:我们可以先将一组数据由大到小逐个分开,再依次合并。
下图绿线为分解,蓝线为合并。我们可以看到,排序数据分解时,当子序列内个数为1 时,不再分解;随后进行依次的合并,"1" "9" 合并为"1 9"的子序列,"5" "6"合并成"5 6"的体序列,同理可得"3 8" "2 7",再让子序列合并,"1 9 6 5"合并成"1 5 6 9""3 8""2 7"合并成"2 3 7 8"。最后两个字序列合并成"1 2 3 5 6 7 8 9"
至此,归并排序完毕。
在这里插入图片描述
具体代码,如下:

void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);assert(tmp);_MergeSort(a, 0, n - 1, tmp);free(tmp);
}

void MergeSort(int* a, int n)是我们排序的调用函数,因为他的参数形式不宜用递归实现,所以我们可以写一个子函数void _MergeSort(int* a,int begin,int end ,int* tmp)来实现主要程序的编写,如下:

void _MergeSort(int* a,int begin,int end ,int* tmp)
{if (begin >= end)return;int mid = (begin + end) / 2;_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid+1, end, tmp);int left1 = begin, right1 = mid;int left2 = mid + 1, right2 = end;int i = 0;while (left1 <= right1 && left2 <= right2){if (a[left1] > a[left2])tmp[i++] = a[left2++];elsetmp[i++] = a[left1++];}while (left1 <= right1){tmp[i++] = a[left1++];}while (left2 <= right2){tmp[i++] = a[left2++];}memcpy(a + begin, tmp, i * sizeof(int));
}

我们先通过以下代码进行归并排序“分解”的实现

	if (begin >= end)return;	int mid = (begin + end) / 2;_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid+1, end, tmp);

当子序列内个数为1 时,return 返回;当子序列内个数大于1 时,进行以下编写:
有递归可知,此时的小标区间为[begin , mid] 与 [mid + 1 , end]是排好序的子区间,所有此时我们只要将其合并好就可以了。

	int left1 = begin, right1 = mid;int left2 = mid + 1, right2 = end;int i = 0;while (left1 <= right1 && left2 <= right2){if (a[left1] > a[left2])tmp[i++] = a[left2++];elsetmp[i++] = a[left1++];}while (left1 <= right1){tmp[i++] = a[left1++];}while (left2 <= right2){tmp[i++] = a[left2++];}memcpy(a + begin, tmp, i * sizeof(int));

最后将tmp上的数据拷贝到a的[begin , end]区间即可。

代码可行性测试
void _test()
{int n = 100000000;int* arr = (int*)malloc(sizeof(int) * n);for (int i = 0; i < n; i++){arr[i] = rand();}MergeSort(arr, n);verify(arr, n);free(arr);
}

运行结果如下 :
在这里插入图片描述
程序通过verify(int* arr int n)函数,且成功运行,代码无误。

非递归方案

在非递归方案中我们可以利用循环来实现,主要实现过程如下视频所示:

归并排序思想

我们可以定义一个gap并且gap的初始置为1,用来表示子序列的最小个数为1,随后在整体排完相邻两个子序列后,gap乘以2,此时数组内小标区间为 [ n ∗ g a p , n ∗ ( g a p ∗ 2 − 1 ) ] ∪ [ 0 , g a p − 1 ] , n ∈ N + [n * gap , n * (gap * 2-1)]\cup[0 , gap-1] ,n\in N^+ [ngap,n(gap21)][0,gap1],nN+是有序的,如此循环直到, n ≤ g a p n\leq gap ngap时跳出循环,代码如下:

void MergeSortNonR(int* a,int n)
{int* tmp = (int*)malloc(sizeof(int) * n);assert(tmp);int gap = 1;while (n > gap){for (int i = 0; i < n; i += gap * 2){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + gap * 2 - 1;int j = begin1;if (end1 >= n && begin2 >= n){break;}if (end2 >= n){end2 = n - 1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy( a + i, tmp + i, sizeof(int) * (end2 - i + 1));}gap *= 2;}free(tmp);
}

我们先看如何分解,利用gap来确定子序列的元数个数,再利用for循环来实现两个相邻子序列的排序(即下标区间[begin1,end1] , [begin2,end2]的排序)
注意:在分配完区间[begin1,end1] ,和[begin2,end2]后,我们要对区间范围的有效性进行检查,因为非递归的方案通过比较相邻的子序列,gap2的幂次方所增长,适用的数组长度也为2的幂次方,所以我们要对end1 , begin2 , end2进行检查,如果end1 , begin2 大于数组总个数n时,直接break即可,因为此时的[begin1,n-1]已经是有序的了;如果end2大于n则,令end2=n-1,此时我们只要排好[begin1,end2] , [begin2,n-1]即可,具体过程如下:

		for (int i = 0; i < n; i += gap * 2){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + gap * 2 - 1;int j = begin1;if (end1 >= n && begin2 >= n){break;}if (end2 >= n){end2 = n - 1;}//合并过程}

合并过程与递归方案相同,但需要注意的是数组拷贝的时候,for循环依次拷贝一次。

代码可行性测试

在这里插入图片描述

程序通过verify(int* arr int n)函数,且成功运行,代码无误。

特点分析

特性:归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
时间复杂度:O(N*logN)
空间复杂度:O(N)
稳定性:稳定

计数排序

基本思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。

代码实现

实现步骤:

  1. 选出要排序数组a中的最值,再相减求出数组的相对范围 n = m a x − m i n + 1 n = max - min + 1 n=maxmin+1
  2. 用calloc开辟n个空间为tmp
  3. 利用i遍历a,让数组tmp[ a [ i ] − m i n a[i] - min a[i]min]++
  4. 最后,再遍历tmp , 此时tmp数组下标 + min就表示数据的大小,tmp[数组下标]表示该数据的个数,所以在此时为a直接赋值即可。
    具体代码如下:
void CountSort(int* a, int n)
{int max = a[0], min = a[0];int i = 0;for (i = 0; i < n; i++){if (max < a[i]){max = a[i];}if (min > a[i]){min = a[i];}}int* tmp = (int*)calloc((max - min + 1), sizeof(int));assert(tmp);for (i = 0; i < n; i++){tmp[a[i] - min]++;}int j = 0;for (i = 0; i < max - min + 1; i++){int count = tmp[i];while (count--){a[j++] = i + min;}}free(tmp);
}
代码可行性测试

在这里插入图片描述
程序通过verify(int* arr int n)函数,且成功运行,代码无误。

特点分析

特点分析:计数排序在数据范围集中时,效率很高,但是适用范围及场景有限(例如:小数,结构体,字符串无法比较)
时间复杂度:O(MAX(N,范围))
空间复杂度:O(范围)

归并排序 VS 计数排序(Release版本)

说明

以下会分别对1w,10w,100w,1000w的数据进行100次的排序比较,并计算出排一趟的平均值。

下面是用来生成随机数的代码,可以确保正数与负数的随机分布。

	for (i = 0; i < n; i++){if (rand() % 2){arr3[i] = arr2[i] = arr1[i] = -rand() + i;}else{arr3[i] = arr2[i] = arr1[i] = rand() - i;}}

介绍就到这里了,让我们来看看这100次排序中,谁才是你心目中的排序呢?
PS:100次只是一个小小的测试数据,有兴趣的朋友可以在自己电脑上测试更多的来比较哦。

1w rand( ) 数据测试

在这里插入图片描述

10w rand( ) 数据测试

在这里插入图片描述

100w rand( ) 数据测试

在这里插入图片描述

1000w rand( ) 数据测试

在这里插入图片描述

测试代码

void Test_MergeSort_CountSort()
{int n = 10000000;int count = 100;int* arr1 = numcreate(n);int* arr2 = numcreate(n);int* arr3 = numcreate(n);int time1 = 0, time2 = 0, time3 = 0;int tmp = count;while (tmp--){int i = 0;for (i = 0; i < n; i++){if (rand() % 2){arr3[i] = arr2[i] = arr1[i] = -rand() + i;}else{arr3[i] = arr2[i] = arr1[i] = rand() - i;}}int begin1 = clock();MergeSort(arr1, n);int end1 = clock();int begin2 = clock();MergeSortNonR(arr2, n);int end2 = clock();int begin3 = clock();CountSort(arr3, n);int end3 = clock();time1 += end1 - begin1;time2 += end2 - begin2;time3 += end3 - begin3;}printf("MergeSort: %.2f\n", (float)time1/count);printf("MergeSortNonR: %.2f\n", (float)time2 / count);printf("CountSort: %.2f\n", (float)time3 / count);free(arr1);free(arr2);free(arr3);
}

从结果来看,计数排序快于归并排序,但它的局限性无法比较小数,结构体与字符串;
再看归并排序,非递归类的要略胜一筹哦。

结语

看完之后,谁才是你心目中的排序呢?
欢迎留言,让我们一起来期待在下一期 《决战排序之巅(三)》。

以上就是本期的全部内容喜欢请多多关注吧!!!

http://www.yayakq.cn/news/927906/

相关文章:

  • 企业做网站有什么好处网站建设需求统计表
  • 外贸网站建站mwordpress主题接入社交功能
  • 房产官方网站广州海珠建网站的公司
  • 新开传奇网站一优秀网站设计网站
  • 广州建站公司兴田德润活动建设网站主机免费版
  • 涿州做网站的哪里有网站开发服务
  • 济宁华园建设有限公司网站国内新闻热点事件
  • 中国建设劳动学会是正规网站吗金华哪里做网站
  • 做ppt什么网站图片好dw网页设计作品 成品
  • 网站宝 添加二级域名wordpress 5图片相对路径
  • 建设一个营销型网站大连建站费用
  • 广州微型网站建设wordpress更新是乱码
  • 青岛定制网站建设推广网页设计素材表格
  • 做动画人设有哪些网站可以借鉴扬中网站建设哪家好
  • 手机移动网站模板wordpress用户个人资料
  • 网站研发进度表下载网络服务商是指什么
  • 网站建设需求说明书模板软件开发技术文档范文
  • 增城网站公司电话蓝色网站
  • 长安企业建站怎样拥有自己的网站
  • 深圳网站建设找哪家公司好桓台网站建设
  • WordPress如何添加备案宁波seo推广外包公司
  • 用手机做网站视频云服务平台登录入口
  • 南昌网站建设有限公司物流网络平台
  • 学做烤制食品的网站河南高端网站
  • 企业网站一定要花钱吗wordpress内存不足
  • 做网站用什么开源程序程序员自己做网站怎么能来钱
  • 广州网站建设建航科技公司wordpress弹窗登录
  • 做网站的公司叫什么名字好网站备案 公司名称关联性
  • 一级a做爰片免费网站丶做网站映射tcp
  • 网站域名的管理密码如何索取班级优化大师app下载学生版