当前位置: 首页 > news >正文

布吉网站建设公司wordpress上传pdf文件

布吉网站建设公司,wordpress上传pdf文件,国外购物平台排行榜前十名,百度推广与做网站推广的区别我们在训练模型时学习率的设置非常重要。 学习率的大小很重要。如果它太大,优化就会发散,如果它太小,训练时间太长,否则我们最终会得到次优的结果。其次,衰变率同样重要。如果学习率仍然很大,我们可能会简…

我们在训练模型时学习率的设置非常重要。

  • 学习率的大小很重要。如果它太大,优化就会发散,如果它太小,训练时间太长,否则我们最终会得到次优的结果。
  • 其次,衰变率同样重要。如果学习率仍然很大,我们可能会简单地在最小值附近反弹,从而无法达到最优

我们可以通过学习率时间表(Learning Rate Scheduling)有效地管理准确性

一、基于FashionMNIST任务的学习率时间表实践准备

构建简单网络

def net_fn():model = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.ReLU(),nn.Linear(120, 84), nn.ReLU(),nn.Linear(84, 10))return model

模型结构如下(左-netron
在这里插入图片描述
简单的训练框架
全部脚本可以查看笔者的github: LearningRateScheduling.ipynb

def train(model, train_iter, test_iter, config, scheduler=None):device = config.deviceloss = config.lossopt = config.optnum_epochs = config.num_epochsmodel.to(device)animator = Animator(xlabel='epoch', xlim=[0, num_epochs],legend=['train loss', 'train acc', 'test acc'])ep_total_steps = len(train_iter)for ep in range(num_epochs):tq_bar = tqdm(enumerate(train_iter))tq_bar.set_description(f'[ Epoch {ep+1}/{num_epochs} ]')# train_loss, train_acc, num_examplesmetric = Accumulator(3)for idx, (X, y) in tq_bar:final_flag = (ep_total_steps == idx + 1) & (num_epochs == ep + 1)model.train()opt.zero_grad()X, y = X.to(device), y.to(device)y_hat = model(X)l = loss(y_hat, y)l.backward()opt.step()with torch.no_grad():metric.add(l * X.shape[0], accuracy(y_hat, y), X.shape[0])train_loss = metric[0] / metric[2]train_acc = metric[1] / metric[2]tq_bar.set_postfix({"loss" : f"{train_loss:.3f}","acc" : f"{train_acc:.3f}",})if (idx + 1) % 50 == 0:animator.add(ep + idx / len(train_iter), (train_loss, train_acc, None), clear_flag=not final_flag)test_acc = evaluate_accuracy_gpu(model, test_iter)animator.add(ep+1, (None, None, test_acc), clear_flag=not final_flag)if scheduler:if scheduler.__module__ == lr_scheduler.__name__:# 使用 PyTorch In-Built schedulerscheduler.step()else:# 使用自定义 schedulerfor param_group in opt.param_groups:param_group['lr'] = scheduler(ep) print(f'train loss {train_loss:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')plt.show()

二、基于FashionMNIST任务的学习率时间表实践

2.1 无learning rate Scheduler 训练

def test(train_iter, test_iter, scheduler=None):net = net_fn()cfg = Namespace(device=try_gpu(),loss=nn.CrossEntropyLoss(),lr=0.3, num_epochs=10,opt=torch.optim.SGD(net.parameters(), lr=0.3))train(net, train_iter, test_iter, cfg, scheduler)batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)
test(train_iter, test_iter)

在这里插入图片描述

2.2 Square Root Scheduler训练

更新方式为
η = η ∗ n u m _ u p d a t e + 1 \eta =\eta *\sqrt{num\_update + 1} η=ηnum_update+1
本次试验是每一个epoch更新一次

def get_lr(scheduler):lr = scheduler.get_last_lr()[0]scheduler.optimizer.step()scheduler.step()return lrdef plot_scheduler(scheduler, num_epochs=10):s = scheduler.__class__.__name__if scheduler.__module__ == lr_scheduler.__name__:print('pytorch build lr_scheduler')plot_y = [get_lr(scheduler) for _ in range(num_epochs)]else:plot_y = [scheduler(t) for t in range(num_epochs)]plt.title(f'train with learning rate scheduler: {s}')plt.plot(torch.arange(num_epochs), plot_y)plt.xlabel('num_epochs')plt.ylabel('learning_rate')plt.show()class SquareRootScheduler:"""使用均方根scheduler每一个epoch更新一次"""def __init__(self, lr=0.1):self.lr = lrdef __call__(self, num_update):return self.lr * pow(num_update + 1.0, -0.5)scheduler = SquareRootScheduler(lr=0.1)
plot_scheduler(scheduler)

在这里插入图片描述
训练

test(train_iter, test_iter, scheduler)

从下图中可以看出:曲线比以前更平滑了。其次,过度拟合较少。
在这里插入图片描述

2.3 FactorScheduler训练

学习率更新方式: η t + 1 ← m a x ( η m i n , η t ⋅ α ) \eta_{t+1} \leftarrow \mathop{\mathrm{max}}(\eta_{\mathrm{min}}, \eta_t \cdot \alpha) ηt+1max(ηmin,ηtα)

class FactorScheduler:def __init__(self, factor=1, stop_factor_lr=1e-7, base_lr=0.1):self.factor = factorself.stop_factor_lr = stop_factor_lrself.base_lr = base_lrdef __call__(self, num_update):self.base_lr = max(self.stop_factor_lr, self.base_lr * self.factor)return self.base_lrscheduler = FactorScheduler(factor=0.8, stop_factor_lr=1e-2, base_lr=0.6)
plot_scheduler(scheduler)

在这里插入图片描述
训练

test(train_iter, test_iter, scheduler)

在这里插入图片描述

2.4 Multi Factor Scheduler训练

保持学习率分段恒定,并每隔一段时间将其降低一个给定的量。也就是说,给定一组何时降低速率的时间比如$ (s = {3, 8} )$
d e c r e a s e ( η t + 1 ← η t ⋅ α ) t ∈ s decrease (\eta_{t+1} \leftarrow \eta_t \cdot \alpha) \ \ t \in s decrease(ηt+1ηtα)  ts

net = net_fn()
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
scheduler = lr_scheduler.MultiStepLR(trainer, milestones=[3, 8], gamma=0.5)plot_scheduler(scheduler)

在这里插入图片描述
训练

test(train_iter, test_iter, scheduler)

在这里插入图片描述

2.5 Cosine Scheduler训练

Loshchilov和Hutter提出了一个相当令人困惑的启发式方法。它依赖于这样一种观察,即我们可能不想在一开始就大幅降低学习率,此外,我们可能希望在最后使用非常小的学习率来“完善”解决方案。这导致了一个类似余弦的时间表,具有以下函数形式,用于范围内的学习率 t ∈ [ 0 , T ] t \in [0, T] t[0,T]

η t = η T + η 0 − η T 2 ( 1 + cos ⁡ ( π t T ) ) \eta_t = \eta_T + \frac{\eta_0 - \eta_T}{2} \left(1 + \cos(\frac{\pi t}{T})\right) ηt=ηT+2η0ηT(1+cos(Tπt))

注:

  • η T \eta_T ηT: 为最终的学习率
  • η 0 \eta_0 η0: 为最开始的学习率
class CosineScheduler:def __init__(self, max_update, base_lr=0.01, final_lr=0,warmup_steps=0, warmup_begin_lr=0):self.base_lr_orig = base_lrself.max_update = max_updateself.final_lr = final_lrself.warmup_steps = warmup_stepsself.warmup_begin_lr = warmup_begin_lrself.max_steps = self.max_update - self.warmup_stepsdef get_warmup_lr(self, step):increase = (self.base_lr_orig - self.warmup_begin_lr) \* float(step) / float(self.warmup_steps)return self.warmup_begin_lr + increasedef __call__(self, step):if step < self.warmup_steps:return self.get_warmup_lr(step)if step <= self.max_update:self.base_lr = self.final_lr + (self.base_lr_orig - self.final_lr) * (1 + math.cos(math.pi * (step - self.warmup_steps) / self.max_steps)) / 2return self.base_lrscheduler = CosineScheduler(max_update=10, base_lr=0.2, final_lr=0.02)
plot_scheduler(scheduler)

在这里插入图片描述
训练

test(train_iter, test_iter, scheduler)

在这里插入图片描述

2.6 Warmup

在某些情况下,初始化参数不足以保证良好的解决方案。对于一些先进的网络设计来说,这尤其是一个问题(Transformer的训练常用该方法),可能会导致不稳定的优化问题。
我们可以通过选择一个足够小的学习率来解决这个问题,以防止一开始就出现分歧。不幸的是,这意味着进展缓慢。相反,学习率高最初会导致差异。

对于这种困境,一个相当简单的解决方案是使用一个预热期,在此期间学习速率增加到其初始最大值,并冷却速率直到优化过程结束。为了简单起见,通常使用线性增加来实现这一目的。

scheduler = CosineScheduler(max_update=10, warmup_steps=3, base_lr=0.2, final_lr=0.02)
plot_scheduler(scheduler, 15)

在这里插入图片描述
训练

test(train_iter, test_iter, scheduler)

在这里插入图片描述

小结

从上述的5个策略上来看,一般情况我们用 Cosine Scheduler 或者线性衰减就能得到较好的结果。不过对于较大的模型,需要用warmup 并且需要特意去设计,比如NoamOpt等。

http://www.yayakq.cn/news/43323/

相关文章:

  • 百度推广怎么做的网站诸城做网站公司
  • wordpress上传媒体文件大小修改网站从哪些方面做优化
  • 网站建设与管理基础及实训(php版)公司手机版网站模板免费下载
  • 什么行业适合做网站推广合肥晨曦网站建设
  • 自己做营销型网站网站开发需求网
  • 临沂建站平台网站网站设计的公司
  • 网站中竖导航栏怎么做在线制作国庆头像
  • 网站怎么做参考文献如何免费推广一个网站
  • 做新网站推广的活动网页微信版登陆看不到聊天记录吗
  • 网站的目标定位有哪些网站 版式
  • 网站顶部动画代码国外网站建设平台
  • 江门有那几间公司做网站的怎么用php做网站方案
  • 网站建设 地址 昌乐网站设计与建设难吗
  • 网站关键词筛选怎么样在网上建设网站挣钱
  • 国内精品网站建设上海发布公众号官网
  • 怎么把统计代码加到网站别人品牌的域名做网站吗
  • 开发一个网站的费用南昌网站建设模板技术公司
  • 福建嘉瑞建设工程有限公司网站安卓手机app下载
  • 网站 横幅做seo要明白网站内容乃重中之重
  • 网站建设开发费怎么做账滨州北京网站建设价格低
  • 深圳网站建设及推广服务公司郑州大旗网站制作公司
  • wordpress生成站点地图兰州市建设工程质量监督站网站
  • 物理机安装虚拟机做网站中山做网站的公司
  • 淄博网站建设优惠臻动传媒免费ppt生成器
  • 什么网站收录排名最高百姓畅言六安杂谈
  • 做网站怎么租用服务器吗江西九江怎么样
  • 北京市网站制作设计wordpress手机 不适应
  • 怎么找到网站的空间服务商大庆油田建设集团网站
  • 机顶盒做网站东莞网站建设网站
  • 珠海网站制作系统模型下载网站开发流程