当前位置: 首页 > news >正文

南通网站开发公司福州网站建设网络公司

南通网站开发公司,福州网站建设网络公司,用网站模板做网站,网站做好怎么推广1. 需求概述 在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。 2. 问题说明…

1. 需求概述

在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。

2. 问题说明

假设我们有一个用户登录记录表 user_log,表结构如下:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
12024-05-04
12024-05-05
22024-04-25
22024-04-28
22024-05-02
22024-05-03
22024-05-04

我们的目标是找出每个用户连续三天登录的所有数据记录,期望的输出结果如下:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
22024-05-02
22024-05-03
22024-05-04

3. 查询思路

为了完成这个任务,我们可以利用 Hive SQL 的窗口函数来处理这个问题。主要的思路是:

  1. 窗口函数的使用:通过 LEAD() 函数获取当前登录记录的下一天和下两天的日期。
  2. 日期差计算:计算当前日期和下一天、下两天的日期差,判断是否为连续的三天。
  3. 筛选符合条件的数据:最终筛选出满足条件(即连续三天登录)的数据记录。

4. 查询实现

下面是具体的 Hive SQL 查询实现:

with t as (select *, lead(dt,1,dt) over(partition by id order by dt) last_day, lead(dt,2,dt) over(partition by id order by dt) last_2_day from user_log
),
t2 as (select *, datediff(last_2_day, dt) date_diff from t
)
select distinct id, d 
from t2 
lateral view explode(map('dt', dt, 'last_day', last_day, 'last_2_day', last_2_day)) tem as s, d 
where date_diff = 2;

5.代码解析

1. 子查询 t

这个子查询为每个用户的登录记录添加了两列,分别是 last_daylast_2_day,它们表示当前记录的下一天和下两天的登录日期。这里使用了窗口函数 LEAD() 来实现。

  • LEAD(dt, 1, dt):这个窗口函数获取当前行的下一天登录日期。如果下一天不存在,则返回当前日期 dt 作为默认值。
  • LEAD(dt, 2, dt):这个窗口函数获取当前行的下两天登录日期。如果下两天不存在,则返回当前日期 dt 作为默认值。
  • PARTITION BY id:按 id 列(即用户ID)对数据进行分组。
  • ORDER BY dt:按日期排序。

所以,t 子查询的结果将会如下(假设数据表 user_log 的某一部分):

iddtlast_daylast_2_day
12024-04-252024-04-262024-04-27
12024-04-262024-04-272024-04-28
12024-04-272024-04-282024-04-30
12024-04-282024-04-302024-05-01
12024-04-302024-05-012024-05-02
12024-05-012024-05-022024-05-04
12024-05-022024-05-042024-05-05

 

2. 子查询 t2

t2 子查询中,我们计算了日期差 date_diff,它表示 last_2_day 和当前登录日期 dt 之间的天数差。使用了 DATEDIFF() 函数来计算两个日期之间的天数差。

  • DATEDIFF(last_2_day, dt):计算 last_2_day 与当前日期 dt 之间的天数差。

date_diff 为 2 的记录说明 dtlast_2_day 是连续的三天登录。

3. LATERAL VIEW 和 EXPLODE

在查询的外层,使用了 LATERAL VIEWEXPLODE 来对数据进行展平操作,并对每个用户的连续三天登录日期进行处理。

  • LATERAL VIEWLATERAL VIEW 用于展开复杂数据类型(如数组或映射)。在这个查询中,LATERAL VIEW 展开了一个映射(map),每个映射包含了 dtlast_day 和 last_2_day 三个字段。
  • EXPLODE(map(...))EXPLODE 会将一个映射中的每个键值对展开为多行。对于每一行数据,都会根据映射的每个键值对创建一行记录。

map('dt', dt, 'last_day', last_day, 'last_2_day', last_2_day) 创建了一个映射(map),映射的键是 'dt''last_day''last_2_day',值分别是 dtlast_daylast_2_day

这将会生成一个包含每个字段名(dtlast_daylast_2_day)和值的结果行。LATERAL VIEW 使得每一行的键值对都展开为多行数据,因此可以进一步进行查询操作。

4. 查询的最终条件

最后,通过 where date_diff = 2 筛选出符合条件的记录。这意味着我们只选取那些连续三天登录的记录(日期差为 2),并通过 distinct 去重。

5. 查询结果示例

在执行查询后,我们将得到如下结果:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
22024-05-02
22024-05-03
22024-05-04

 这个结果显示了每个用户连续三天登录的记录,符合我们预期的输出。

 

 

http://www.yayakq.cn/news/170522/

相关文章:

  • 支付商城网站制作深圳网站建设制作优化
  • 西安企业做网站多少钱投票网站开发
  • 网站做nat映射需要哪些端口中国建设网证书查询平台
  • 韩城建设公司网站建筑工程承包合同
  • 网站根据城市做二级目录广州萝岗区网站建设
  • 忘了网站链接怎么做怎样取消网站备案
  • 建平县网站建设昭通网站建设公司
  • iis配置网站开发环境东莞财务公司代注册公司
  • dedeampz 部署wordpress 网站访问慢郑州本地网站
  • 公司网站的功能低俗网站推广哪里找
  • 帝国CMS做的淘客网站公司网站维护建设的通知
  • 网站变量查询证书网站建设
  • 建设银行招聘网站百度推广一年收费标准
  • 做网站学多长时间可以学会绍兴中小企业名录
  • 广东城市建设档案馆官方网站seo网站营销推广公司
  • 私人做网站图片内容管理系统 开源
  • 行业电子商务网站建设南宁高端网站建设公司
  • 企业做网站的费用如果做账wordpress 4.0 4.6
  • 工程中标查询网站代理推广平台
  • 智能网站推广优化中国企业新闻观察网
  • 网站建设设计的流程网站设计制作报价图片欣赏
  • 如何建立一个网站放视频桐城市网站建设
  • 网站开发公司有什么福利一条龙网站建设价格
  • 乌镇网站建设标书做网站视频教程
  • 超炫网站欣赏经济技术开发区人才网
  • 网站建设鑫科技二级域名网站怎么建设
  • 制作网站要步骤网站建设与管理专业介绍
  • 网站开发课设郫县网站建设兼职
  • 建设路小学查分网站wordpress汉化器
  • 展厅策划设计公司黔南seo