当前位置: 首页 > news >正文

北京公司核名工商官网东莞外贸优化公司

北京公司核名工商官网,东莞外贸优化公司,天津网站建设定制,wordpress添加小工具一、说明 在这篇文章中,我们将展示如何在 TensorFlow 2.0 中实现基本的卷积神经网络 \(AlexNet\)。AlexNet 架构由 Alex Krizhevsky 设计,并与 Ilya Sutskever 和 Geoffrey Hinton 一起发布。并获得Image Net2012竞赛中冠军。 教程概述: 理论…

一、说明

       在这篇文章中,我们将展示如何在 TensorFlow 2.0 中实现基本的卷积神经网络 \(AlexNet\)。AlexNet 架构由 Alex Krizhevsky 设计,并与 Ilya Sutskever 和 Geoffrey Hinton 一起发布。并获得Image Net2012竞赛中冠军。

教程概述:

  1. 理论回顾
  2. 在 TensorFlow 2.0 中的实现

二 理论回顾

        现实生活中的计算机视觉问题需要大量高质量数据进行训练。过去,人们使用 CIFAR 和 NORB 数据集作为计算机视觉问题的基准数据集。然而,ImageNet竞赛改变了这一点。该数据集需要比以前更复杂的网络才能获得良好的结果。

        AlexNet 是 2012 年取得最佳结果的一种网络架构。它的 Top-5 错误率为 15.3%。第二好的成绩远远落后(26.2%)。

        该架构有大约 6000 万个参数,由以下层组成。

图层类型特征图尺寸内核大小跨步激活
图像1227×227
卷积9655×5511×114ReLU
最大池化9627×273×32
卷积25627×275×51ReLU
最大池化25613×133×32
卷积第384章13×133×31ReLU
卷积第384章13×133×31ReLU
卷积25613×133×31ReLU
最大池化2566×63×32
完全连接4096ReLU
完全连接4096ReLU
完全连接1000软最大

        在我们的例子中,我们将仅在 ImageNet 数据集中的两个类上训练模型,因此我们的最后一个全连接层将只有两个具有 Softmax 激活函数的神经元。

        有一些变化使得 AlexNet 与当时的其他网络不同。让我们看看是什么改变了历史!

2.1  重叠的池化层

        标准池化层汇总同一内核图中相邻神经元组的输出。传统上,相邻池单元总结的邻域不重叠。重叠池化层与标准池化层类似,只是计算 Max 的相邻窗口彼此重叠。

重叠池化与非重叠池化

2.2 ReLU 非线性

        评估神经元输出的传统方法是使用 sigmoid 或 tanh 激活函数。这两个函数固定在最小值和最大值之间,因此它们是饱和非线性的。然而,在 AlexNet 中,使用了修正线性单位函数,或者简称为 \(ReLU\)。该函数的阈值为\(0\)。这是一个非饱和激活函数。

        \(ReLU\) 函数需要更少的计算并允许更快的学习,这对在大型数据集上训练的大型模型的性能有很大影响。

2.3  局部响应标准化

        局部响应归一化 (LRN) 首次在 AlexNet 架构中引入,其中选择的激活函数是 \(ReLU\)。使用 LRN 的原因是为了鼓励 侧向抑制。 这是指神经元减少其邻居活动的能力。当我们使用 ReLU 激活函数处理神经元时,这非常有用。具有 \(ReLU\) 激活函数的神经元具有无界激活,我们需要 LRN 对其进行标准化。

三. TensorFlow 2.0中的实现

        交互式 Colab 笔记本可在以下链接找到

        让我们从导入所有必需的库开始

# Load the TensorBoard notebook extension
%load_ext tensorboard
import datetime
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as pltfrom tensorflow.keras import Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout

        导入后,我们需要准备数据。在这里,我们将仅使用 ImageNet 数据集的一小部分。使用以下代码,您可以下载所有图像并将它们存储在文件夹中。

import cv2
import urllib
import requests
import PIL.Image
import numpy as np
from bs4 import BeautifulSoup#ship synset
page = requests.get("http://www.image-net.org/api/text/imagenet.synset.geturls?wnid=n04194289")
soup = BeautifulSoup(page.content, 'html.parser')
#bicycle synset
bikes_page = requests.get("http://www.image-net.org/api/text/imagenet.synset.geturls?wnid=n02834778")
bikes_soup = BeautifulSoup(bikes_page.content, 'html.parser')str_soup=str(soup)
split_urls=str_soup.split('\r\n')bikes_str_soup=str(bikes_soup)
bikes_split_urls=bikes_str_soup.split('\r\n')!mkdir /content/train
!mkdir /content/train/ships
!mkdir /content/train/bikes
!mkdir /content/validation
!mkdir /content/validation/ships
!mkdir /content/validation/bikesimg_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)def url_to_image(url):resp = urllib.request.urlopen(url)image = np.asarray(bytearray(resp.read()), dtype="uint8")image = cv2.imdecode(image, cv2.IMREAD_COLOR)return imagen_of_training_images=100
for progress in range(n_of_training_images):if not split_urls[progress] == None:try:I = url_to_image(split_urls[progress])if (len(I.shape))==3:save_path = '/content/train/ships/img'+str(progress)+'.jpg'cv2.imwrite(save_path,I)except:Nonefor progress in range(n_of_training_images):if not bikes_split_urls[progress] == None:try:I = url_to_image(bikes_split_urls[progress])if (len(I.shape))==3:save_path = '/content/train/bikes/img'+str(progress)+'.jpg'cv2.imwrite(save_path,I)except:Nonefor progress in range(50):if not split_urls[progress] == None:try:I = url_to_image(split_urls[n_of_training_images+progress])if (len(I.shape))==3:save_path = '/content/validation/ships/img'+str(progress)+'.jpg'cv2.imwrite(save_path,I)except:Nonefor progress in range(50):if not bikes_split_urls[progress] == None:try:I = url_to_image(bikes_split_urls[n_of_training_images+progress])if (len(I.shape))==3:save_path = '/content/validation/bikes/img'+str(progress)+'.jpg'cv2.imwrite(save_path,I)except:None

        现在我们可以创建一个网络。原始 AlexNet 的最后一层有 1000 个神经元,但这里我们只使用一个。这是因为我们只将图像用于两个类。为了构建我们的卷积神经网络,我们将使用 Sequential API。

num_classes = 2# AlexNet model
class AlexNet(Sequential):def __init__(self, input_shape, num_classes):super().__init__()self.add(Conv2D(96, kernel_size=(11,11), strides= 4,padding= 'valid', activation= 'relu',input_shape= input_shape,kernel_initializer= 'he_normal'))self.add(MaxPooling2D(pool_size=(3,3), strides= (2,2),padding= 'valid', data_format= None))self.add(Conv2D(256, kernel_size=(5,5), strides= 1,padding= 'same', activation= 'relu',kernel_initializer= 'he_normal'))self.add(MaxPooling2D(pool_size=(3,3), strides= (2,2),padding= 'valid', data_format= None)) self.add(Conv2D(384, kernel_size=(3,3), strides= 1,padding= 'same', activation= 'relu',kernel_initializer= 'he_normal'))self.add(Conv2D(384, kernel_size=(3,3), strides= 1,padding= 'same', activation= 'relu',kernel_initializer= 'he_normal'))self.add(Conv2D(256, kernel_size=(3,3), strides= 1,padding= 'same', activation= 'relu',kernel_initializer= 'he_normal'))self.add(MaxPooling2D(pool_size=(3,3), strides= (2,2),padding= 'valid', data_format= None))self.add(Flatten())self.add(Dense(4096, activation= 'relu'))self.add(Dense(4096, activation= 'relu'))self.add(Dense(1000, activation= 'relu'))self.add(Dense(num_classes, activation= 'softmax'))self.compile(optimizer= tf.keras.optimizers.Adam(0.001),loss='categorical_crossentropy',metrics=['accuracy'])model = AlexNet((227, 227, 3), num_classes)

        创建模型后,我们定义一些重要的参数以供以后使用。此外,让我们创建图像数据生成器。\(AlexNet\)的参数非常多,有6000万个,这是一个巨大的数字。如果没有足够的数据,这将很可能导致过度拟合。因此,在这里,我们将利用数据增强技术,您可以在此处找到更多相关信息。

        出于同样的原因,AlexNet 中使用了 dropout 层。该技术包括以预定概率“关闭”神经元。这迫使每个神经元具有更强大的特征,可以与其他神经元一起使用。我们不会在这里使用 dropout 层,因为我们不会使用整个数据集。

# some training parameters
EPOCHS = 100
BATCH_SIZE = 32
image_height = 227
image_width = 227
train_dir = "train"
valid_dir = "validation"
model_dir = "my_model.h5"

train_datagen = ImageDataGenerator(rescale=1./255,rotation_range=10,width_shift_range=0.1,height_shift_range=0.1,shear_range=0.1,zoom_range=0.1)train_generator = train_datagen.flow_from_directory(train_dir,target_size=(image_height, image_width),color_mode="rgb",batch_size=BATCH_SIZE,seed=1,shuffle=True,class_mode="categorical")valid_datagen = ImageDataGenerator(rescale=1.0/255.0)
valid_generator = valid_datagen.flow_from_directory(valid_dir,target_size=(image_height, image_width),color_mode="rgb",batch_size=BATCH_SIZE,seed=7,shuffle=True,class_mode="categorical")
train_num = train_generator.samples
valid_num = valid_generator.samples

        现在我们可以设置TensorBoard并开始训练我们的模型。这样我们就可以实时跟踪模型性能。

log_dir="logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir)
callback_list = [tensorboard_callback]# start training
model.fit(train_generator,epochs=EPOCHS,steps_per_epoch=train_num // BATCH_SIZE,validation_data=valid_generator,validation_steps=valid_num // BATCH_SIZE,callbacks=callback_list,verbose=0)# save the whole model
model.save(model_dir)%tensorboard --logdir logs/fit

        让我们使用我们的模型进行一些预测并将其可视化。

class_names = ['bike', 'ship']x_valid, label_batch  = next(iter(valid_generator))prediction_values = model.predict_classes(x_valid)# set up the figure
fig = plt.figure(figsize=(10, 6))
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)# plot the images: each image is 227x227 pixels
for i in range(8):ax = fig.add_subplot(2, 4, i + 1, xticks=[], yticks=[])ax.imshow(x_valid[i,:],cmap=plt.cm.gray_r, interpolation='nearest')if prediction_values[i] == np.argmax(label_batch[i]):# label the image with the blue textax.text(3, 17, class_names[prediction_values[i]], color='blue', fontsize=14)else:# label the image with the red textax.text(3, 17, class_names[prediction_values[i]], color='red', fontsize=14)

 

四、概括

        在这篇文章中,我们展示了如何在 TensorFlow 2.0 中实现 \(AlexNet\)。我们只使用了 ImageNet 数据集的一部分,这就是为什么我们没有得到最好的结果。为了获得更高的准确性,需要更多的数据和更长的训练时间。

参考资料:

 数据黑客变种rs    深度学习 机器学习 TensorFlow    2020 年 2 月 29 日  |  0

http://www.yayakq.cn/news/730145/

相关文章:

  • 河北建设银行官网招聘网站成都网站建设吧
  • openwrt wordpress东莞网络优化服务商
  • 英文网站制作 官网企业所得税税率是多少2024年
  • 网站建设的行业资讯、线上推广工作内容
  • 东莞网站建设(曼哈顿信科)网站建设怎么弄轮换图片
  • 牛皮纸东莞网站建设技术支持可以用于制作网页的软件
  • 自己做网站开发如何找客户wordpress 前台评论
  • app的网站域名英语培训
  • 南水北调建设管理局网站wordpress网站备份还原
  • 合肥网站建设公国内精美网站
  • 乌克兰服装网站建设网站建设asp编程
  • 网站开发工具 枫子科技wordpress ip 地址修改密码
  • 走廊文化建设图片网站安装wordpress it works
  • 用myeclipse做网站wordpress 新建用户
  • 安徽建设工程实名制网站山西两学一做网站登录
  • 网站系统分析网站后台建设编辑器
  • 北京住房与城乡建设厅网站首页旅游网站的广告预算怎么做
  • wordpress 下载按钮插件seo搜索引擎优化内容主要有
  • 建立网站的公司wix和wordpress区别
  • 大连专业手机自适应网站建设维护wordpress 主题预览空白
  • 做网站有视频教吗114网址大全
  • 深圳网站建设html51.简述网站建设流程
  • wordpress网站重定向磁力搜索器 磁力猫
  • 前端开发 网站建设wordpress 上传下载
  • 单位做网站网站建设网站软件有哪些
  • 外国人做那个的视频网站网站系统评测要怎么做呢
  • 给别人做网站怎么赚钱吗wordpress 模板 安装
  • 怎么制作网站内容怎么用网页制作一个网站
  • 87网站一起做wordpress uehtml
  • wordpress整站加密乐清网站建设公司哪家好