当前位置: 首页 > news >正文

前端网站开发教程北京互联网网站建设价格

前端网站开发教程,北京互联网网站建设价格,软文推广经典案例,360关键词竞价网站目录 一、实验原理二、实验步骤1. 图像读取与预处理2. 边缘检测3. 轮廓检测4. 标记轮廓序号 三、实验结果四、完整代码 Hi,大家好,我是半亩花海。 本实验旨在利用 Python 和 OpenCV 库,通过图像处理和边缘检测算法实现黄豆图像的自动识别和计…

目录

  • 一、实验原理
  • 二、实验步骤
    • 1. 图像读取与预处理
    • 2. 边缘检测
    • 3. 轮廓检测
    • 4. 标记轮廓序号
  • 三、实验结果
  • 四、完整代码

Hi,大家好,我是半亩花海。 本实验旨在利用 Python 和 OpenCV 库,通过图像处理边缘检测算法实现黄豆图像的自动识别和计数,并在图像上标记每个黄豆的轮廓序号

一、实验原理

  • 灰度转换:将彩色图像转换为灰度图像,减少计算复杂度。
  • 高斯平滑:使用高斯模糊来减少图像噪声。
  • Canny边缘检测:检测图像中的边缘。
  • 轮廓查找:使用OpenCV的findContours函数检测图像中的轮廓。
  • 绘制轮廓和标记:在原始图像上绘制检测到的轮廓,并标记每个轮廓的序号。

二、实验步骤

1. 图像读取与预处理

import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('soybean.jpg')# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 平滑处理
blurred = cv2.GaussianBlur(gray, (11, 11), 0)

soybean.jpg 图片如下所示,可自取:

2. 边缘检测

  • cv2.Canny(blurred, 30, 150):使用Canny算法进行边缘检测,参数30和150分别是低阈值和高阈值。
# 使用Canny边缘检测
edges = cv2.Canny(blurred, 30, 150)

3. 轮廓检测

  • cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE):查找图像中的轮廓。RETR_EXTERNAL表示只检测外部轮廓,CHAIN_APPROX_SIMPLE表示使用简单的链式近似方法。
# 查找轮廓
contours, _ = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

4. 标记轮廓序号

  • cv2.boundingRect(contour):计算轮廓的边界框,用于确定标注位置。
  • cv2.drawContours(image, [contour], -1, (0, 255, 0), 2):绘制轮廓,绿色线条,线宽为2像素。
  • cv2.putText(image, str(i + 1), (x + w // 2, y + h // 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2):在每个轮廓的中心位置标注序号,红色字体,字体大小为0.5,线宽为2像素。
# 绘制轮廓并标记序号
for i, contour in enumerate(contours):# 计算轮廓的边界框,用于确定标注位置x, y, w, h = cv2.boundingRect(contour)# 绘制轮廓cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)# 在轮廓内标注序号cv2.putText(image, str(i + 1), (x + w // 2, y + h // 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)

三、实验结果

  • plt.figure(figsize=(10, 10)):创建一个显示窗口,大小为10x10英寸。
  • plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)):将处理后的图像转换为RGB格式并显示。
  • plt.axis(‘off’):关闭坐标轴显示。
  • plt.show():显示图像。
  • print(f"黄豆数量: {len(contours)}"):输出检测到的黄豆数量。
# 显示结果图像
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()# 输出黄豆数量
print(f"黄豆数量: {len(contours)}")

实验结果表明:图像中的所有18个黄豆都被成功识别和标记,每个黄豆的轮廓被绿色线条清晰绘制,序号标记在轮廓中心位置附近。

四、完整代码

import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('soybean.jpg')# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 平滑处理
blurred = cv2.GaussianBlur(gray, (11, 11), 0)# 使用Canny边缘检测
edges = cv2.Canny(blurred, 30, 150)# 查找轮廓
contours, _ = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 绘制轮廓并标记序号
for i, contour in enumerate(contours):# 计算轮廓的边界框,用于确定标注位置x, y, w, h = cv2.boundingRect(contour)# 绘制轮廓cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)# 在轮廓内标注序号cv2.putText(image, str(i + 1), (x + w // 2, y + h // 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)# 显示结果图像
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()# 输出黄豆数量
print(f"黄豆数量: {len(contours)}")
http://www.yayakq.cn/news/111094/

相关文章:

  • 创业公司用wordpress东莞关键词优化平台
  • 青岛网站建设东橙品牌设计建设银行网站明细多长时间
  • 2013电子商务网站建设百度官网网站登录
  • 纪检网站建设方案图片动画制作
  • 南昌制作网站的公司吗计算机专业论文网站开发
  • 电子商务网站建设外包服务怎么让网站排名下降
  • 开发小网站一般多少钱一个山东 网站备案
  • 中国空间站最新消息新闻自贡网站制作
  • 最棒的网站建设如何建立一个自己的网站啊
  • 建什么网站 做 cpa广州企业网站建设哪家好
  • 做蛋糕的英文网站wordpress 经过天数
  • 做临床研究在哪个网站注册受欢迎的佛山网站制作
  • 鄂州网站建设设计科技狂人
  • 宁波网站制作怎样360推广登陆入口
  • 企业网站的建立费用重庆发布的最新消息今天
  • 四川做网站的公司有哪些河南省建设集团有限公司官网
  • 有没有卖设计的网站网站项目开发案
  • 能建设铁塔的公司网站wordpress 中文字体插件
  • 武威市凉州区建设局网站建设网站服务器自营方式的特点
  • 不用服务器做视频网站手机淘宝网页
  • 网站目录命名盐城市网站
  • 浙江建设局图审网站中关村网站建设公司
  • 群团组织网站建设中山网站建设哪家强
  • 江西做网站的公司绍兴市交通建设有限公司网站
  • 祁东网站设计公司网站开发程序员工资
  • 免费自助建站哪个好环保网站建设多少钱
  • 满城住房和城乡建设局网站国家高新技术企业认定有什么用
  • 传动设备 技术支持 东莞网站建设无锡网站建设收费
  • 浙江龙元建设集团 网站全网营销实战培训
  • 好的国外设计网站推荐企业外部网站建设