当前位置: 首页 > news >正文

长春微信网站建设公司做网站文案怎么写

长春微信网站建设,公司做网站文案怎么写,饥饿营销案例,表白二维码制作网站Debug 1. 快速运行一次所有的代码 (fast_dev_run) 训练了好长时间但是在训练or 验证的时候崩溃了 使用 fast_dev_run运行5个batch 的 training validation test and predication 查看是否存在错误: train Trainer(fast_dev_runTrue) # True 时为5 train Train…

Debug

1. 快速运行一次所有的代码 (fast_dev_run)

训练了好长时间但是在训练or 验证的时候崩溃了 使用 fast_dev_run运行5个batch 的 training validation test and predication 查看是否存在错误:

train = Trainer(fast_dev_run=True) # True 时为5 
train = Trainer(fast_dev_run=7) # 可以调节为任意int值

2.缩短epoch的长度 (limit_xxx_batch)

有时仅使用training or validation or … 是helpful的 例如在Imagenet等较大的数据集上,比等待complete epoch faster

train = Trainer(limit_train_batch=0.1, limit_val_batch=0.01) # 10% and 1%
train = Trainer(limit_train_batch=10, limit_val_batch=5) # 10 batches and 5 batches

3. 打印输入输出层尺寸(example_input_array)

class LitModel(LightningModule):def __init__(self, *args, **kwargs):self.example_input_array = torch.Tensor(32, 1, 28, 28)

summary table 将会输出包括 input and output 的 dimensions

  | Name  | Type        | Params | Mode  | In sizes  | Out sizes
----------------------------------------------------------------------
0 | net   | Sequential  | 132 K  | train | [10, 256] | [10, 512]
1 | net.0 | Linear      | 131 K  | train | [10, 256] | [10, 512]
2 | net.1 | BatchNorm1d | 1.0 K  | train | [10, 512] | [10, 512]

发现 bottlenecks (profiler)

1. 查看时间(profiler)

trainer = Trainer(profiler="simple") # 测量训练循环中的所有方法# output for simple
FIT Profiler Report-------------------------------------------------------------------------------------------
|  Action                                          |  Mean duration (s) |  Total time (s) |
-------------------------------------------------------------------------------------------
|  [LightningModule]BoringModel.prepare_data       |  10.0001           |  20.00          |
|  run_training_epoch                              |  6.1558            |  6.1558         |
|  run_training_batch                              |  0.0022506         |  0.015754       |
|  [LightningModule]BoringModel.optimizer_step     |  0.0017477         |  0.012234       |
|  [LightningModule]BoringModel.val_dataloader     |  0.00024388        |  0.00024388     |
|  on_train_batch_start                            |  0.00014637        |  0.0010246      |
|  [LightningModule]BoringModel.teardown           |  2.15e-06          |  2.15e-06       |
|  [LightningModule]BoringModel.on_train_start     |  1.644e-06         |  1.644e-06      |
|  [LightningModule]BoringModel.on_train_end       |  1.516e-06         |  1.516e-06      |
|  [LightningModule]BoringModel.on_fit_end         |  1.426e-06         |  1.426e-06      |
|  [LightningModule]BoringModel.setup              |  1.403e-06         |  1.403e-06      |
|  [LightningModule]BoringModel.on_fit_start       |  1.226e-06         |  1.226e-06      |
-------------------------------------------------------------------------------------------trainer = Trainer(profiler="advanced") # 测量每个function的时间
# output for advanced
Profiler ReportProfile stats for: get_train_batch4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
3752/1876    0.011    0.000   18.887    0.010 {built-in method builtins.next}1876     0.008    0.000   18.877    0.010 dataloader.py:344(__next__)1876     0.074    0.000   18.869    0.010 dataloader.py:383(_next_data)1875     0.012    0.000   18.721    0.010 fetch.py:42(fetch)1875     0.084    0.000   18.290    0.010 fetch.py:44(<listcomp>)60000    1.759    0.000   18.206    0.000 mnist.py:80(__getitem__)60000    0.267    0.000   13.022    0.000 transforms.py:68(__call__)60000    0.182    0.000    7.020    0.000 transforms.py:93(__call__)60000    1.651    0.000    6.839    0.000 functional.py:42(to_tensor)60000    0.260    0.000    5.734    0.000 transforms.py:167(__call__)# 如果探查器报告变得太长,您可以将报告流式传输到文件
from lightning.pytorch.profilers import AdvancedProfilerprofiler = AdvancedProfiler(dirpath=".", filename="perf_logs")
trainer = Trainer(profiler=profiler)

highlevel usage:
https://lightning.ai/docs/pytorch/stable/tuning/profiler_intermediate.html

2. 查看accelerator的使用情况 (DeviceStatsMonitor)

检测瓶颈的另一个有用技术是确保您使用加速器 (GPU/TPU/HPU) 的全部容量。

from lightning.pytorch.callbacks import DeviceStatsMonitortrainer = Trainer(callbacks=[DeviceStatsMonitor()])

SOTA find

https://lightning.ai/docs/pytorch/stable/advanced/training_tricks.html

http://www.yayakq.cn/news/29814/

相关文章:

  • 如何建三网合一网站wordpress兼职
  • 焦作网站制作公司南京网站建设
  • 如何在虚拟机里面做网站中国建筑人才网官网登录
  • 主营 网站建设 app开发外贸建站平台哪家好
  • 广州企业网站建设开发河南网站建设价格大全
  • 知名的网站制作深圳十佳设计公司排名
  • 传统外贸网站的seo运用陕西建设工程信息网站
  • 上海网站开发服务商2023年互联网创业项目
  • 网站开发需要数据库技术如何建个人网站教程
  • 外贸seo网站搭建互联网+报名入口官网
  • 有名设计网站网站源码安全吗
  • 徐州城乡建设招投标网站南宁做网站科技公司
  • 单页网站开发费用昆明百度关键词优化
  • 江苏省建设工程考试网站我要找人做网站的主页
  • 新手建站广告联盟赚钱怎么样自己做网站
  • 网站开发程序制作域名备案asp做招聘网站流程
  • 网站虚拟主机空间c语言网站开发
  • 网站建设丨金手指谷哥12淮北论坛招聘求职
  • 做海鲜团购网站找做网站的公司需要注意什么
  • 网站建设完成后怎么上传服务器互助网站制作公司
  • 台州网站设计 解放路wordpress内核源码
  • 隆昌住房和城乡建设官方网站账号注册免费
  • 汕头站扩建效果图百度seo排名优化教程
  • 微信商城网站怎么做哪里做公司网站比较好
  • 杭州网站设计一个一起做网站
  • 东莞网站建设推广公司哪家好wordpress 做的网站
  • 企业建站服务退役军人效果图代做网站
  • 淘宝做网站被骗做维修注册网站
  • 做偏门网站网站自动更新文章
  • 免费建设网站哪个好删除wordpress修订版本号