当前位置: 首页 > news >正文

烟台住房和城乡建设厅网站哪个网站做ppt模板赚钱

烟台住房和城乡建设厅网站,哪个网站做ppt模板赚钱,国外网站空间需要备案吗,十大装饰公司文章目录 梯度累积什么是梯度累积如何理解理解梯度累积梯度累积的工作原理 梯度累积的数学原理梯度累积过程如何实现梯度累积 梯度累积的可视化 梯度累积 什么是梯度累积 随着深度学习模型变得越来越复杂,模型的训练通常需要更多的计算资源,特别是在训…

文章目录

    • 梯度累积
      • 什么是梯度累积
      • 如何理解理解梯度累积
        • 梯度累积的工作原理
      • 梯度累积的数学原理
        • 梯度累积过程
        • 如何实现梯度累积
      • 梯度累积的可视化

梯度累积

什么是梯度累积

随着深度学习模型变得越来越复杂,模型的训练通常需要更多的计算资源,特别是在训练期间需要更多的内存。在训练深度学习模型时,在硬件资源有限的情况下,很难使用大批量数据进行有效学习。大批量数据通常可以带来更好的梯度估计,但同时也需要大量的内存。

梯度累积是一种巧妙的技术,它允许在不增加内存需求的情况下,有效地使用更大的批量数据来训练深度学习模型。

如何理解理解梯度累积

梯度累积本质上涉及将大批量划分为较小的子批量,并在这些子批量上累积计算出的梯度。这一过程模拟了使用较大批量训练的情况。

梯度累积的工作原理

以下是梯度累积过程的逐步分解:

  1. 分而治之:将你的硬件无法处理的大批量划分为更小的、可管理的子批量。
  2. 累积梯度:不是在处理每个子批量后更新模型参数,而是在几个子批量上累积梯度。
  3. 参数更新:在处理了预定义数量的子批量后,使用累积的梯度来更新模型参数。

这种方法使得模型能够利用大批量的稳定性和收敛性,而不必提高内存成本。

梯度累积的数学原理

在这里插入图片描述

梯度累积过程

在深度学习模型中,一个完整的前向和反向传播过程如下:

  • 前向传播:数据通过神经网络,层层处理后得到预测结果。

  • 损失计算:使用损失函数计算预测结果与实际值之间的差异。以平方误差损失函数为例:

    L ( θ ) = 1 2 ( h ( x k ) − y k ) 2 L(\theta) = \frac{1}{2} (h(x_k) - y_k)^2 L(θ)=21(h(xk)yk)2

    这里 L ( θ ) L(\theta) L(θ) 表示损失函数, θ \theta θ 代表模型参数, h ( x k ) h(x_k) h(xk) 是对输入 x k x_k xk 的预测输出, y k y_k yk 是对应的真实输出。

  • 反向传播:计算损失函数相对于模型参数的梯度(对上式求导):

    ∇ θ L ( θ ) = ( h ( x k ) − y k ) ⋅ ∇ θ h ( x k ) \nabla_\theta L(\theta) = (h(x_k) - y_k) \cdot \nabla_\theta h(x_k) θL(θ)=(h(xk)yk)θh(xk)

  • 梯度累积:在传统的训练过程中,每完成一个批次的数据处理后就会更新模型参数。而在梯度累积中,梯度不是立即用来更新参数,而是累加多个小批次的梯度:

    G = ∑ i = 1 n ∇ θ L i ( θ ) G = \sum_{i=1}^{n} \nabla_{\theta} L_i(\theta) G=i=1nθLi(θ)

    这里 G G G 是累积梯度, L i ( θ ) L_i(\theta) Li(θ) 是第 i i i 个batch的损失函数。

  • 参数更新:累积足够的梯度后,使用以下公式更新参数:

    θ = θ − η ⋅ G \theta = \theta - \eta \cdot G θ=θηG
    其中 l r lr lr 是学习率,用于控制更新的步长。

如何实现梯度累积

以下是在 PyTorch 中实现梯度累积的示例:

# 模型定义
model = ...
optimizer = ...# 累积步骤数
accumulation_steps = 4for epoch in range(num_epochs):optimizer.zero_grad()for i, (inputs, labels) in enumerate(dataloader):outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()# 只有在处理足够数量的子批量后才更新参数if (i + 1) % accumulation_steps == 0:optimizer.step()optimizer.zero_grad()# 如果批量大小不是累积步数的倍数,确保在每个epoch结束时更新if (i + 1) % accumulation_steps != 0:optimizer.step()optimizer.zero_grad()

这个例子中,accumulation_steps 定义了在参数更新前需要累积的batch数量。

梯度累积的可视化

为了更好地理解梯度累积的影响,可视化可以非常有帮助。以下是一个例子,说明如何在神经网络中可视化梯度流,以监控梯度是如何被累积和应用的:

import matplotlib.pyplot as plt# 绘制梯度流动的函数
def plot_grad_flow(named_parameters):ave_grads = []layers = []for n, p in named_parameters:if (p.requires_grad) and ("bias" not in n):layers.append(n)ave_grads.append(p.grad.abs().mean())plt.plot(ave_grads, alpha=0.3, color="b")plt.hlines(0, 0, len(ave_grads)+1, linewidth=1, color="k")plt.xticks(range(0, len(ave_grads), 1), layers, rotation="vertical")plt.xlim(xmin=0, xmax=len(ave_grads))plt.xlabel("层")plt.ylabel("平均梯度")plt.title("网络中的梯度流")plt.grid(True)plt.show()# 在训练过程中或训练后调用此函数以可视化梯度流
plot_grad_flow(model.named_parameters())

参考资料:

  1. Gradient Accumulation Algorithm

  2. Performing gradient accumulation with 🤗 Accelerate

  3. 梯度累加(Gradient Accumulation)

http://www.yayakq.cn/news/882040/

相关文章:

  • 权威的合肥网站推广seo快速排名系统
  • 学生自做网站优秀作品微慕wordpress
  • 网站与平台的区别财经新闻最新消息
  • 南宁市平台公司seo网站推广电话
  • 甜品网站建设方案wordpress删除主题数据
  • 底湘西网站建设ppt做的模板下载网站有哪些
  • 织梦本地做网站网站搭建的流程
  • 物流行业网站源码有哪个网站做ic
  • 用什么网站能直接做dj公司oa办公平台
  • 无代码网站开发平台有哪些建设模板网站报价
  • 建设搜索引擎网站创新的中山网站建设
  • 进一步强化网站建设网站开发做网站
  • 济南品质网站建设哪家好微信平台可以做微网站吗
  • 建网站就找伍佰亿腾讯企点下载官网
  • 东莞网站建设seo推广出口贸易公司网站怎么做
  • 企业建网站设计常用的网络编程技术
  • 易优建站系统wordpress 广告位
  • 开县网站制作安丘市住房和城乡建设局网站
  • 济宁网站建设常用解决方案网络营销相关政策有哪些
  • 网站建设的书籍有哪些wordpress 中文表单
  • 网站如何做营销网站建设公司豆瓣
  • 内网建站工具苏州大型网站建设
  • 虚拟主机如何分配网站网站营销话术
  • 东营seo网站推广简单网站制作软件
  • 优化网站有哪些方法兼职做问卷调查的网站好
  • 高密市赏旋网站设计有限公司做视频网站需要多大的带宽
  • 网址建站WordPress仿站助手
  • 企业网站seo成功案例网站建设客户来源
  • 门业网站源码江门网站制作套餐
  • 算命网站开发电话网页设计与制作介绍