当前位置: 首页 > news >正文

专门做衣服的网站快速提高网站排名

专门做衣服的网站,快速提高网站排名,天元建设集团有限公司董事长,罗湖网站建设的公司哪家好一、排序算法的时间复杂度和空间复杂度 排序算法 平均时间复杂度 最坏时间复杂度 最好时间复杂度 空间复杂度 稳定性 冒泡排序 O(n) O(n) O(n) O(1) 稳定 直接选择排序 O(n) O(n) O(n) O(1) 不稳定 直接插入排序 O(n) O(n) O(n) O(1) 稳定 快速排序 O(n…

一、排序算法的时间复杂度和空间复杂度

排序算法

平均时间复杂度

最坏时间复杂度

最好时间复杂度

空间复杂度

稳定性

冒泡排序

O(n²)

O(n²)

O(n)

O(1)

稳定

直接选择排序

O(n²)

O(n²)

O(n²)

O(1)

不稳定

直接插入排序

O(n²)

O(n²)

O(n)

O(1)

稳定

快速排序

O(nlogn)

O(n²)

O(nlogn)

O(nlogn)

不稳定

堆排序

O(nlogn)

O(nlogn)

O(nlogn)

O(1)

不稳定

归并排序

O(nlogn)

O(nlogn)

O(nlogn)

O(n)

稳定

希尔排序

O(nlogn)

O(n²)O(nlogn)

O(1)

不稳定

计数排序

O(n+k)

O(n+k)

O(n+k)

O(n+k)

稳定

基数排序

O(N*M) 

O(N*M)

O(N*M)

O(M)

稳定

1 归并排序可以通过手摇算法将空间复杂度降到O(1),但是时间复杂度会提高。

2 基数排序时间复杂度为O(N*M),其中N为数据个数,M为数据位数。

1.1 复杂度辅助记忆

  1. 冒泡、选择、直接 排序需要两个for循环,每次只关注一个元素,平均时间复杂度为O(n²))(一遍找元素O(n),一遍找位置O(n))
  2. 快速、归并、希尔、堆基于二分思想,log以2为底,平均时间复杂度为O(nlogn)(一遍找元素O(n),一遍找位置O(logn))

1.2 稳定性辅助记忆

  • 稳定性记忆-“快希选堆”(快牺牲稳定性) 
  • 排序算法的稳定性:排序前后相同元素的相对位置不变,则称排序算法是稳定的;否则排序算法是不稳定的。

二、理解时间复杂度

2.1 常数阶O(1)

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

 2.2 对数阶O(logN)

int i = 1;
while(i<n)
{i = i * 2;
}

2.3 线性阶O(n)

for(i=0; i<=n; i++)
{System.out.println("hello");
}

2.4 线性对数阶O(n)

for(m=1; m<n; m++)
{i = 1;while(i<n){i = i * 2;}
}

2.5 平方阶O(n)


for(x=1; i<=n; x++)
{for(i=1; i<=n; i++){System.out.println("hello");}
}

2.6 K次方阶O(n)

    for(i=0; i<=n; i++){for(j=0; i<=n; i++){for(k=0; i<=n; i++){System.out.println("hello");}}}// k = 3 , n ^ 3

上面从上至下依次的时间复杂度越来越大,执行的效率越来越低。

三、空间复杂度

3.1 常数阶O(1) —— 原地排序

只用到 temp 这么一个辅助空间

原地排序算法,就是空间复杂度为O(1)的算法,不牵涉额外得到其他空间~

    private static void swap(int[] nums, int i, int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;}

2.2 对数阶O(logN)

2.3 线性阶O(n)

        int[] newArray = new int[nums.length];for (int i = 0; i < nums.length; i++) {newArray[i] = nums[i];}

四、排序算法

4.1 冒泡排序

(思路:大的往后放)

4.1.1 代码

    private static void bubbleSort(int[] nums) {for (int i = 0; i < nums.length; i++) {for (int j = 0; j < nums.length - 1 - i; j++) {if (nums[j] > nums[j + 1]) {swap(nums, j, j + 1);}}}}

4.1.2 复杂度

时间复杂度: N^2

空间复杂度:1

最佳时间复杂度:N^2  (因为就算你内部循环只对比,不交换元素,也是一样是N)

稳定性:稳定的 (大于的才换,小于等于的不交换)

    // { 0,1,2,3,4}private static void bubbleSort(int[] nums) {for (int i = 0; i < nums.length; i++) {boolean isChange = false;for (int j = 0; j < nums.length - 1 - i; j++) {if (nums[j] > nums[j + 1]) {swap(nums, j, j + 1);isChange = true;}}if(!isChange){return;}}}

改进后的代码,最佳时间复杂度: N  (因为假如第一轮对比就没有任何元素交换,那么可以直接退出,也就是只有一次外循环)

4.2 选择排序

(思路:最小的放最前)

4.2.1 代码

private static void selectSort(int[] nums) {for (int i = 0; i < nums.length; i++) {int minIndex = i;for (int j = i + 1; j < nums.length; j++) {if (nums[j] < nums[minIndex]) {minIndex = j;}}swap(nums,minIndex,i);}}

4.2.2 复杂度

时间复杂度: N^2

空间复杂度:1

最佳时间复杂度:N^2  

稳定性:不稳定的 

4.3 直接插入排序

(思路:往排序好的数组中,找到合适的位置插进去)

4.3.1 代码

private static void insertSort(int[] nums) {for (int i = 1; i < nums.length; i++) {int temp = nums[i];int j = i - 1;for (; j >= 0 && temp < nums[j]; j--) {nums[j + 1] = nums[j];}nums[j + 1] = temp;}}

4.3.2 复杂度

时间复杂度: N^2

空间复杂度:1

最佳时间复杂度:N  (因为你不进入内部循环。 [1,2,3,4,5])

稳定性:稳定的 

4.4 快速排序

(思路:利用数字target,把数组切成两边,左边比 target大,后边比 target小)

4.4.1 代码

/*** 快速排序算法* @param nums 待排序的数组* @param beginIndex 排序起始索引* @param endIndex 排序结束索引*/
private static void quickSort(int[] nums, int beginIndex, int endIndex) {if (beginIndex >= endIndex) {return; // 递归终止条件:当开始索引大于等于结束索引时,表示已经完成排序}int mid = getMid(nums, beginIndex, endIndex); // 获取中间索引,用于分割数组quickSort(nums, beginIndex, mid - 1); // 对中间索引左侧的数组进行快速排序quickSort(nums, mid + 1, endIndex); // 对中间索引右侧的数组进行快速排序
}/*** 获取分区中的中间元素的索引* @param nums 待排序的数组* @param beginIndex 分区的起始索引* @param endIndex 分区的结束索引* @return 中间元素的索引*/
private static int getMid(int[] nums, int beginIndex, int endIndex) {int target = nums[beginIndex]; // 以数组的起始元素作为基准值int left = beginIndex;int right = endIndex;boolean right2left = true; // 标识位,表示当前从右往左搜索while (right > left) {if (right2left) {while (right > left && nums[right] > target) {right--;}if (right > left) {nums[left] = nums[right]; // 当右侧元素较大时,将右侧元素移到插入位置right2left = false; // 切换为从左往右搜索}} else {while (right > left && nums[left] < target) {left++;}if (right > left) {nums[right] = nums[left]; // 当左侧元素较小时,将左侧元素移到插入位置right2left = true; // 切换为从右往左搜索}}}nums[left] = target; // 将基准值放入插入位置,完成一轮交换return left;
}

4.4.2 复杂度

时间复杂度: N Log N (每个元素找到中间位置的,需要 LogN 时间,N个元素就是NLogN)

空间复杂度:N Log N (递归调用,需要栈空间)

最差时间复杂度:N ^ 2  ( 比如正序数组 [1,2,3,4,5] )

稳定性:不稳定的 

4.5 堆排序

(思路:最大放上面,然后与最后元素交换,继续建堆)

4.5.1 代码

/*** 堆排序算法* @param nums 待排序的数组* @param beginIndex 排序的起始索引* @param endIndex 排序的结束索引*/
private static void heapSort(int[] nums, int beginIndex, int endIndex) {if (beginIndex >= endIndex) {return; // 当开始索引大于等于结束索引时,排序完成}for (int i = endIndex; i >= beginIndex; i--) {createHeap(nums, i); // 构建最大堆swap(nums, 0, i); // 将最大元素移到数组末尾}
}/*** 构建最大堆* @param nums 待构建的数组* @param endIndex 当前堆的结束索引*/
private static void createHeap(int[] nums, int endIndex) {int lastFatherIndex = (endIndex - 1) / 2;for (int i = lastFatherIndex; i >= 0; i--) {int biggestIndex = i;int leftChildIndex = i * 2 + 1;int rightChildIndex = i * 2 + 2;if (leftChildIndex <= endIndex) {biggestIndex = nums[biggestIndex] > nums[leftChildIndex] ? biggestIndex : leftChildIndex;}if (rightChildIndex <= endIndex) {biggestIndex = nums[biggestIndex] > nums[rightChildIndex] ? biggestIndex : rightChildIndex;}swap(nums, biggestIndex, i); // 调整堆,确保最大元素位于堆顶}
}/*** 交换数组中两个元素的位置* @param nums 数组* @param i 索引1* @param j 索引2*/
private static void swap(int[] nums, int i, int j) {int temp = nums[i];nums[i] = nums[j];nums[j] = temp;
}

4.5.2 复杂度

时间复杂度: N Log N (每个元素都要构建1次堆,需要 LogN 时间,N个元素就是NLogN,任何情况下都一样)

空间复杂度:1 (原地排序)

最差时间复杂度:N ^ 2  ( 比如正序数组 [1,2,3,4,5] )

稳定性:不稳定的 

4.6 归并排序

递归思路,左右两边排序好了,就已经排序好了

4.6.1 代码

// 归并排序的主方法
private static void mergeSort(int[] nums, int beginIndex, int endIndex) {// 如果起始索引大于等于结束索引,表示只有一个元素或没有元素,不需要排序if (beginIndex >= endIndex) {return;}// 计算数组的中间索引int mid = beginIndex + (endIndex - beginIndex) / 2;// 递归排序左半部分mergeSort(nums, beginIndex, mid);// 递归排序右半部分mergeSort(nums, mid + 1, endIndex);// 合并左右两部分merge(nums, beginIndex, mid, endIndex);
}// 合并函数,用于将左右两部分合并成一个有序的数组
private static void merge(int[] nums, int beginIndex, int mid, int endIndex) {int left = beginIndex;int right = mid + 1;int[] newArrays = new int[endIndex - beginIndex + 1];int newArraysIndex = 0;// 比较左右两部分的元素,将较小的元素放入新数组while (left <= mid && right <= endIndex) {newArrays[newArraysIndex++] = nums[left] <= nums[right] ? nums[left++] : nums[right++];}// 将剩余的左半部分元素复制到新数组while (left <= mid) {newArrays[newArraysIndex++] = nums[left++];}// 将剩余的右半部分元素复制到新数组while (right <= endIndex) {newArrays[newArraysIndex++] = nums[right++];}// 将合并后的新数组复制回原数组for (int i = 0; i < newArrays.length; i++) {nums[beginIndex + i] = newArrays[i];}
}

4.6.2 复杂度

时间复杂度: N Log N (每个元素都要递归,需要 LogN 时间,N个元素就是NLogN,任何情况下都一样)

空间复杂度:N

稳定性:稳定的 

 4.7 希尔排序

思路:直接插入排序的升级版(分段式插入排序)

4.7.1 代码

private static void quickSort(int[] nums) {
//        int gap = nums.length / 2;
//        while (gap > 0) {for (int i = 1; i < nums.length; i++) {int temp = nums[i];int j;for (j = i - 1; j >= 0 && temp < nums[j]; j--) {nums[j + 1] = nums[j];}nums[j + 1] = temp;}
//        gap = gap / 2;
//        }}// 把上面的快速排序改成shell排序,只需要把间隔1 改成gapprivate static void shellSort(int[] nums) {int gap = nums.length / 2;while (gap > 0) {for (int i = gap; i < nums.length; i++) {int temp = nums[i];int j;for (j = i - gap; j >= 0 && temp < nums[j]; j = j - gap) {nums[j + gap] = nums[j];// 如果当前元素比待插入元素大,将当前元素向后移动}nums[j + gap] = temp; // 因为上边 j=j-gap退出的时候,j已经被剪掉1次了,可能小于0了}gap = gap / 2;}}

4.7.2 复杂度

时间复杂度: N Log N 

空间复杂度:1

稳定性:稳定的 

http://www.yayakq.cn/news/609025/

相关文章:

  • 找考卷做要去哪个网站北京软件开发公司哪家专业
  • 贵州网站推广襄阳网站seo厂家
  • 智冠宝企业网站管理系统优秀网页设计网站
  • 差旅网站建设个人做外贸网站平台有哪些
  • 自己如何做电影网站微信开发公司怎么样
  • 一起做网店网站特点网店交易平台网站建设
  • 微信网站的结构环境工程公司宣传册设计样本
  • 乐清建网站wordpress主题标签
  • 汉中 网站建设wordpress 上传
  • 网站开发的未来展望工业和信息化部电信设备认证中心
  • 北京如何做网站广州番禺职业技术学院招生网
  • 做男鞋的网站正规网站优化推广
  • 太和县建设局网站游戏网站建设方案
  • 上海最专业的集团网站建设搜索优化推广公司
  • 除了做视频网站还能做什么网站专业关键词优化平台
  • 有没有代加工的网站网站建设项目可行性
  • 网站建设全南宁网站建设公司
  • 网站设计公司wordpress 3.9.2 中文
  • 玉溪建设局门户网站微网站设计尺寸
  • 自己做网站销售核酸结果查询
  • 青海制作网站多少钱什么是网站html静态化
  • 做网站的软件page做食品网站有哪些
  • 珠海网站建设公司有哪些制作自己的网页
  • 用来做区位分析的地图网站wordpress 用户组权限设置
  • 医院门户网站模板seo页面排名优化
  • 成都企业网站优化品牌建设人才队伍建设
  • 互动网站设计与制作网页制作与设计实验报告
  • 兰州新区建设局网站杭州百度快照优化排名推广
  • 深圳哪家做网站展厅设计案例
  • 贵阳网络网站建设有关于网站建设的论文